Question

In: Statistics and Probability

A highway department is studying the relationship between traffic flow and speed. The following model has...

A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized.

y=B0+B1x+e

where

y= traffic flow in vehicles per hour

x= Vehicle speed in miles per hours

  

The following data were collected during rush hour for six highways leading out of the city.

Traffic Flow () Vehicle Speed ()
1255 35
1207 30
1365 50
1314 50
1247 35
1290 45

a. Develop an estimated regression equation for the data.

The regression equation is:

y=________+_______x (to 2 decimals)

b. Use a=.02 to test for a significant relationship.

s= (to 4 decimals)
R^2 (to 4 decimals)
R^2 adj (to 4 decimals)

Analysis of Variance


SOURCE

DF
SS
(to whole number)
MS
(to whole number)

(to 2 decimals)
-value
(to 4 decimals)
Regression
Residual
Total

p-value is - Select your answer -more/less than a , so the linear relationship - Select your answer -is not is significant.

Solutions

Expert Solution


Related Solutions

A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized. y=b0+b1X+E where y= traffic flow of vehicles per hour X= vehicle speed in miles per hour The following data were collected during rush hour for six highways leading out of the city. Traffic flow(y) vehicle speed(X) 1169 30 1134 40 1162 30 1223 35 1166 25 1285 40 a) the following Regression equation y=___________+__________x (2 decimals) b) use a=0.05 significance s=________________ (4...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,258 35 1,331 40 1,226 30 1,336 45 1,350 50 1,125 25 In working further with...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,257 35 1,330 40 1,224 30 1,333 45 1,351 50 1,123 25 In working further with...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,255 35 1,328 40 1,228 30 1,336 45 1,347 50 1,124 25 In working further with...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized. where y=b0+b1x+b2x2 y=traffic flow in vehicles per hour x=vehicle speed in miles per hour The following data were collected during rush hour for six highways leading out of the city. Traffic Flow () Vehicle Speed () 1257 36 1329 45 1226 35 1335 45 1349 55 1125 25 a. Use the data to compute the coefficients of this estimated regression equation (to...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,254 35 1,331 40 1,224 30 1,335 45 1,348 50 1,123 25 In working further with...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized. y = B 0 + B 1 x + B2x 2 + E where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,256 35 1,329 45 1,226 30 1,335 50 1,349 55...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,256 35 1,329 40 1,226 30 1,333 45 1,347 50 1,122 25 In working further with...
A highway department is studying the relationship between traffic flow and speed. The following model has...
A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,257 35 1,327 40 1,226 30 1,333 45 1,350 50 1,122 25 In working further with...
A statistical program is recommended. A highway department is studying the relationship between traffic flow and...
A statistical program is recommended. A highway department is studying the relationship between traffic flow and speed. The following model has been hypothesized: y = β0 + β1x + ε where y = traffic flow in vehicles per hour x = vehicle speed in miles per hour. The following data were collected during rush hour for six highways leading out of the city. Traffic Flow (y) Vehicle Speed (x) 1,257 35 1,331 40 1,225 30 1,337 45 1,349 50 1,126...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT