In: Statistics and Probability
all hypothesis testing problems must include the null and alternative hypotheses and report the p-value of the data.
A company is said to be out of compliance if more than 7% of all
invoices contain errors, and it is said to be seriously out of
compliance if more than 10% of all invoices contain errors. Suppose
an auditor randomly selects a sample of 640 invoices and finds that
80 contained errors.
a) Construct a 95% confidence interval for this
company's error rate.
b) How should the company be rated if statements
about being out of compliance or seriously out of compliance
require 5% level of significance?
c) What is the probability a company would be
rated as seriously out of compliance by this test if 12% of all
invoices at that company contain errors?
d) What sample size should the auditor use to
estimate the error rate to within 3% with 99% confidence if it is
assumed that the error rate will be no more than 12%?
Part A:
Part B:
For Seriously Out of Compliance
For being Out of Compliance
Part C:
:
Part D:
So, n = (2.56)2*(0.125*0.875)/0.032 = 796.44 or 796
So, the sample size should be 796...
End of the Solution...