In: Statistics and Probability
salary(in lakh per annum) | no of employees in | no of employees in |
less than | organization 1 | organization 2 |
5 | 655 | 950 |
10 | 872 | 1657 |
15 | 1033 | 2108 |
20 | 1144 | 2488 |
25 | 1189 | 2645 |
30 | 1204 | 2769 |
35 | 1212 | 2825 |
40 | 1217 | 2858 |
45 | 1220 | 2870 |
50 | 1222 | 2877 |
55 | 1224 | 2882 |
60 | 1225 | 2885 |
65 | 2888 | |
70 | 2890 |
from the above data please find the mean,variance,standrad deviation and coefficient of variation
and also conclude that Which organisation has more equitable distribution of compensations?
1) organization 1
X | Fi | Xi*Fi | Xi^2*Fi | (Xi-Xbar)^2*Fi | |
5 | 655 | 3275 | 16375 | 573615.4776 | |
10 | 872 | 8720 | 87200 | 527401.5444 | |
15 | 1033 | 15495 | 232425 | 396556.0446 | |
20 | 1144 | 22880 | 457600 | 243623.0517 | |
25 | 1189 | 29725 | 743125 | 109419.7191 | |
30 | 1204 | 36120 | 1083600 | 25399.75409 | |
35 | 1212 | 42420 | 1484700 | 200.7137226 | |
40 | 1217 | 48680 | 1947200 | 35579.07957 | |
45 | 1220 | 54900 | 2470500 | 132131.531 | |
50 | 1222 | 61100 | 3055000 | 290071.0252 | |
55 | 1224 | 67320 | 3702600 | 509726.7973 | |
60 | 1225 | 73500 | 4410000 | 790753.3343 | |
sum | 13417 | 464135 | 19690325 | 3634478.073 |
mean = sum(Xi*Fi)/sum(Fi)
464135/13417= 34.5931
var= sum{(Xi-Xbar)^2*Fi}/(n-1)
3634478.0726/(13417-1) = 270.9062368
sd= sqrt(var)
16.46
CV = sd/mean*100%
16.4592/34.5931*100%
0.4758
2) organization 2
X | Fi | Xi*Fi | Xi^2*Fi | (Xi-Xbar)^2*Fi | |
5 | 950 | 4750 | 23750 | 1232061.991 | |
10 | 1657 | 16570 | 165700 | 1593671.711 | |
15 | 2108 | 31620 | 474300 | 1426389.496 | |
20 | 2488 | 49760 | 995200 | 1098525.045 | |
25 | 2645 | 66125 | 1653125 | 678186.8839 | |
30 | 2769 | 83070 | 2492100 | 335817.0064 | |
35 | 2825 | 98875 | 3460625 | 102127.5885 | |
40 | 2858 | 114320 | 4572800 | 2930.475336 | |
45 | 2870 | 129150 | 5811750 | 45631.15964 | |
50 | 2877 | 143850 | 7192500 | 232384.9532 | |
55 | 2882 | 158510 | 8718050 | 563855.6879 | |
60 | 2885 | 173100 | 10386000 | 1040104.12 | |
65 | 2888 | 187720 | 12201800 | 1661741.796 | |
70 | 2890 | 202300 | 14161000 | 2428378.447 | |
sum | 35592 | 1459720 | 72308700 | 12441806.36 |
mean = sum(Xi*Fi)/sum(Fi)
1459720/35592= 41.0126
var= sum{(Xi-Xbar)^2*Fi}/(n-1)
12441806.361/(35592-1) = 349.577319
sd= sqrt(var)
18.70
CV = sd/mean*100%
18.697/41.0126*100%
0.4559
mean of organization 2 is more reliable as it has less value of Coefficient of variation. hence Organization 2 more equitable distribution of compensations