Question

In: Physics

Two 10-cm-diameter charged disks face each other, 23 cm apart. The left disk is charged to...

Two 10-cm-diameter charged disks face each other, 23 cm apart. The left disk is charged to - 50 nC and the right disk is charged to + 50 nC .

A)

What is the electric field E⃗ , both magnitude and direction, at the midpoint between the two disks?

B)

To the left disk.
To the right disk.

Parallel to the plane of the disks.

C)What is the force F⃗  on a -3.0 nC charge placed at the midpoint?

Solutions

Expert Solution


Related Solutions

Two 4.0-cm-diameter disks face each other, 2.0mm apart. They are charged to
Two 4.0-cm-diameter disks face each other, 2.0mm apart. They are charged to
Two 10-cm-diameter charged rings face each other, 19 cm apart. The left ring is charged to...
Two 10-cm-diameter charged rings face each other, 19 cm apart. The left ring is charged to -30 nC and the right ring is charged to +30 nC . Part A What is the magnitude of the electric field E⃗  at the midpoint between the two rings? Express your answer to two significant figures and include the appropriate units. Part B What is the direction of the electric field E⃗  at the midpoint between the two rings? What is the direction of the...
Two 2.7 cmcm -diameter disks face each other, 2.2 mmmm apart. They are charged to ±15nC±15nC....
Two 2.7 cmcm -diameter disks face each other, 2.2 mmmm apart. They are charged to ±15nC±15nC. 1.)What is the electric field strength between the disks? 2.)A proton is shot from the negative disk toward the positive disk. What launch speed must the proton have to just barely reach the positive disk?
Two 10-cm-diameter charged rings face each other, 20.0 cmapart. Both rings are charged to + 10.0...
Two 10-cm-diameter charged rings face each other, 20.0 cmapart. Both rings are charged to + 10.0 nC . What is the electric field strength A.)at the midpoint between the two rings? B.)at the center of the left ring?
Two 15-cm-diameter metal disks separated by a 0.69-mm-thick piece of Pyrex glass are charged to a...
Two 15-cm-diameter metal disks separated by a 0.69-mm-thick piece of Pyrex glass are charged to a potential difference of 1100 V . What is the surface charge density on the disks? What is the surface charge density on the glass?
Two 10-cm-diameter electrodes 0.52 cm apart form a parallel-plate capacitor. The electrodes are attached by metal...
Two 10-cm-diameter electrodes 0.52 cm apart form a parallel-plate capacitor. The electrodes are attached by metal wires to the terminals of a 20 Vbattery. 1-------- What are a) the charge on each electrode, b) the electric field strength inside the capacitor, and c) the potential difference between the electrodes while the capacitor is attached to the battery? 2--------- What are a) the charge on each electrode, b) the electric field strength inside the capacitor, and c) the potential difference between...
Two circular disks spaced 0.005 m (0.50 cm) apart form a parallel-plate capacitor. Transferring 1.10 ×10^9...
Two circular disks spaced 0.005 m (0.50 cm) apart form a parallel-plate capacitor. Transferring 1.10 ×10^9 electrons from one disk to the other causes the electric field strength to be 2.50 ×10^5N/C. What are the diameters of the disks? Express your answer with the appropriate units.
Two parallel plates, each charged equally and oppositely to the other, are separated by 8.9500 cm....
Two parallel plates, each charged equally and oppositely to the other, are separated by 8.9500 cm. A proton is let go from rest at the positive plate's surface and, at the same time, an electron is let go from rest at the negative plate's surface. What is the distance between the negative plate and the point where the proton and the electron go by each other? Note: unlike most questions, this one will need your answer correct to 5 significant...
Two large, thin, metal plates of 0.5mx0.5m face each other. They are spaced 2cm apart and...
Two large, thin, metal plates of 0.5mx0.5m face each other. They are spaced 2cm apart and have equal but opposite charges on their inner surfaces. a) if the magnitude E of the electric field between the plates is 700 N/C what is the magnitude of the charge on each plate? b) Integrate E across the gap between the plates to find the potential difference V and hence the capacitance C. c) Recalculate C using the parallel plate capacitator formula instead....
A uniformly charged disk of radius 35.0 cm carries a charge density of 6.40 ✕ 10-3...
A uniformly charged disk of radius 35.0 cm carries a charge density of 6.40 ✕ 10-3 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm MN/C (b) 10.0 cm MN/C (c) 50.0 cm MN/C (d) 200 cm MN/C
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT