Question

In: Physics

An electron is released in a uniform electric field, and it experiences an electric force of...

An electron is released in a uniform electric field, and it experiences an electric force of 2.2 ✕ 10-14 N downward. What are the magnitude and direction of the electric field?

Magnitude
____________ N/C
Direction

upward, to the left, to the right or downward?

Solutions

Expert Solution

Use F=EQ, where F is the force experienced in newtons, E is the magnitude of the electric field strength (in N/C)

and Q is the charge on the electron.

1. Magnitude = F/Q = (2.2*10^-14) / (1.6x10^-19) = 137500 N/C

2. Direction: direction of an electric field is always given by the direction of motion of a POSITIVELY-CHARGED

particle in the field. If the electron moves downward, then a positive particle will move upward. Hence direction of

field is upward.


Related Solutions

An electron is initially is at rest in a uniform electric field E in the negative...
An electron is initially is at rest in a uniform electric field E in the negative y direction and a uniform magnetic field B in the negative z direction. Solve the equations of motion given by the Lorentz Force and show the trajectory of the electron is found as: x(t)= (cE / wB) * (wt - sintwt) y(T)=(cE / wB) * (1 - coswt) where w=(eB/mc)
An electron is to be accelerated in a uniform electric field having a strength of 4.58×106...
An electron is to be accelerated in a uniform electric field having a strength of 4.58×106 V/m. (a) What energy in keV is given to the electron if it is accelerated through 0.562 m? (b) Over what distance would it have to be accelerated to increase its energy by 58.0 GeV? Draw a diagram and show your parameters and all your work.
5. An electron moves to the right, entering a region that has a uniform electric field...
5. An electron moves to the right, entering a region that has a uniform electric field directed at you. The direction of the force perceived by the electron is: a. down b. up c. on the right d. towards you e. None of the above
The electron gun in a television tube uses a uniform electric field to accelerate electrons from...
The electron gun in a television tube uses a uniform electric field to accelerate electrons from rest to 4.7×107 m/s in a distance of 1.3 cm . What is the electric field strength?
A proton is released from rest inside a region of constant, uniform electric field ?1 pointing...
A proton is released from rest inside a region of constant, uniform electric field ?1 pointing due north. 34.8 s after it is released, the electric field instantaneously changes to a constant, uniform electric field ?2 pointing due south. 8.49 s after the field changes, the proton has returned to its starting point. What is the ratio of the magnitude of ?2 to the magnitude of ?1? You may neglect the effects of gravity on the proton.
An electron with speed 2.75×107 m/s is traveling parallel to a uniform electric field of magnitude...
An electron with speed 2.75×107 m/s is traveling parallel to a uniform electric field of magnitude 1.20×104 N/C . How far will the electron travel before it stops? How much time will elapse before it returns to its starting point?
An electron (charge =-1.6*10^-19C) moves on a path parallels but opposing a uniform electric field of...
An electron (charge =-1.6*10^-19C) moves on a path parallels but opposing a uniform electric field of strengths 2.3 N/C. How much work is done on the on the electron a sit moved 20cm? How much work is done on the electron if it moves perpendicular to the electric field?
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction.
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction. what is the direction of the magnetic field?a) it is in the negative z directionb) it is in the postive y directionc)it is in the positive z directiond) it is in the negative x directione) it is in the postive x direction
A 30 nC charge experiences a 0.035 N electric force.
A 30 nC charge experiences a 0.035 N electric force. What is the magnitude of electric field at the position of this charge?
2.Why do we need the concepts Force and Electric field? What are they? Why electric field...
2.Why do we need the concepts Force and Electric field? What are they? Why electric field lines never intersect? What are electric dipole and electric dipole moment? Define electric potential energy of an electric dipole. What are stable and unstable equilibrium positions for an electric dipole?.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT