In: Math
a) = p = 0.25
b) = sqrt(p(1 - p)/n)
= sqrt(0.25 * 0.75/2500)
= 0.009
c) When the population size is at least 10 times larger than the sample size, then the standard deviation can be approximated by the formula = sqrt(p(1 - p)/n)
d) np = 2500 * 0.25 = 625
n(1 - p) = 2500 * (1 - 0.25) = 1875
Since np > 5 and n(1 - p) > 5, so we can use normal approximation.
e) P(0.23 < < 0.27)
= P((0.23 - )/ < ( - )/ < (0.27 - )/)
= P((0.23 - 0.25)/0.009 < Z < (0.27 - 0.25)/0.009)
= P(-2.22 < Z < 2.22)
= P(Z < 2.22) - P(Z < -2.22)
= 0.9868 - 0.0132
= 0.9736