Question

In: Physics

A 890 g wooden block is initially at rest on a rough horizontal surface when a...

A 890 g wooden block is initially at rest on a rough horizontal surface when a 15.8 g bullet is fired horizontally into (but does not go through) it. After the impact, the block-bullet combination slides 6.50 m before coming to rest. If the coefficient of kinetic friction between block and surface is 0.750, determine the speed of the bullet immediately before impact.
(No Response) m/s

Solutions

Expert Solution

If you have doubt in any part of the solution, feel free to ask.


Related Solutions

A 4.00 kg block sits at rest on a rough horizontal surface. The coefficient of kinetic...
A 4.00 kg block sits at rest on a rough horizontal surface. The coefficient of kinetic friction between the block and the surface is 0.275. Attached to the right side of the block is a spring which is also attached to a wall farther to the right. The spring has a spring constant of 220 N/m and is initially neither compressed nor stretched. A bullet of mass 50.0 grams is fired at the block from the left side. The bullet...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by ? ⃗(?) = (6.0?2 − 2?3)?̂, where the force in in newtons, x is in meters, and the initial position of the block is x = 0. (a) What is the work done in moving the block from x = 1.0 m to x = 3.0 m? (b) What...
Block B is initially at rest. Then block A slides on the smooth surface to the...
Block B is initially at rest. Then block A slides on the smooth surface to the right and collides with block B with a velocity vAvA. Consider three following collision cases where: i) elastic impact; ii ) perfectly plastic impact; iii ) e = 0.5. Just after the collision, rank these three cases where the relative velocitiy of B with respect to A is from largest to smallest magnitude.
A 12.0-kg block is pushed across a rough horizontal surface by a force that is angled...
A 12.0-kg block is pushed across a rough horizontal surface by a force that is angled 30.0◦ below the horizontal. The magnitude of the force is 75.0 N and the acceleration of the block as it is pushed is 3.20 m/s2 . What is the magnitude of the contact force exerted on the block by the surface?
(1) A block is placed on a wooden plank, which is initially horizontal. One end of...
(1) A block is placed on a wooden plank, which is initially horizontal. One end of the plank is slowly raised to make it more and more inclined, and for a while the block stays in place on the plank and doesn't slide due to static friction. Finally, when the plank reaches an incline of 56.3o above horizontal, the block begins to slide. What is the  coefficient of static friction between the block and the plank? (2) Continuing the story... after...
A) A 12.0-g bullet is fired horizontally into a 113-g wooden block that is initially at...
A) A 12.0-g bullet is fired horizontally into a 113-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 149 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 76.0 cm, what was the speed of the bullet at impact with the block? B)A 0.033-kg bullet is fired vertically at 238 m/s into a 0.15-kg baseball that is initially...
A 13.0 kg block is dragged over a rough, horizontal surface by a 88.0 N force...
A 13.0 kg block is dragged over a rough, horizontal surface by a 88.0 N force acting at 20.0° above the horizontal. The block is displaced 4.50 m, and the coefficient of kinetic friction is 0.300. (a) Find the work done on the block by the 88.0 N force. (d) What is increase in internal energy of the block-surface system due to friction? (e) Find the total change in the block's kinetic energy.
9.) A 19.6 kg block is dragged over a rough, horizontal surface by a constant force...
9.) A 19.6 kg block is dragged over a rough, horizontal surface by a constant force of 183 N acting at an angle of angle 30.5 ◦ above the horizontal. The block is displaced 97.1 m and the coefficient of kinetic friction is 0.121. a. Find the work done by the normal force. Answer in units of J. b. What is the net work done on the block? Answer in units of J.
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling at a speed v0 = 10.0m/s when it strikes a massless spring head-on (see figure) and compresses the spring a maximum distance X =0.25m. If the spring has stiffness constant k = 100. N/m, determine the coefficient of kinetic friction between block and surface.
a) A bomb initially at rest on a smooth, horizontal surface is exploded into three pieces....
a) A bomb initially at rest on a smooth, horizontal surface is exploded into three pieces. Two pieces fly off at 90o to each other, a 2.0 kg piece at 20 m/s and a 3.0 kg piece at 12 m/s. The third piece flies off at 30 m/s. (i) Determine the direction of motion for the third piece. (ii) What is its mass? b) A billiard ball moving vertically with a velocity of 10 m/s strikes two other billiard balls...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT