Question

In: Mechanical Engineering

Air enters the turbine of a gas turbine at 1400 kPa, 1400 K, and expands to...

Air enters the turbine of a gas turbine at 1400 kPa, 1400 K, and expands to 100 kPa in two stages. Between the stages, the air is reheated at a constant pressure of 350 kPa to 1400 K. The expansion through each turbine stage is isentropic.

Determine:

(b) the heat transfer for the reheat process, in kJ/kg of air flowing.

(c) the increase in net work as compared to a single stage of expansion with no reheat.

Solutions

Expert Solution


Related Solutions

A gas turbine expands air adiabatically at 1000 kPa and 550 ⁰C to 120 kPa and...
A gas turbine expands air adiabatically at 1000 kPa and 550 ⁰C to 120 kPa and 130⁰C. Air enters the turbine through a 0.25 m 2 opening with an aveage velocity of 45 m/s, and exhausts through a 1 m2 opening. Assume the air is ideal gas with constant specific heats. Take the constant pressure specific heat and gas constant of air as Cp= 1.05 kJ/(kg K) and R=0.287 kJ/(kg K), respectively. Determine; (a) the mass flow rate of air...
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and...
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and 287 C to 90 kPa and 67 C. Take specific heats at room temperature (300 K). a) Find the isentropic efficiency of the turbine. b) Find the work produced by the turbine for a mass flow rate of 2.5 kg/s. c) If the mass flow rate of air is again 2.5 kg/s, find the entropy generation under steady conditions
Air enters a turbine operating at steady state at 6 bar, 1200 K and expands to...
Air enters a turbine operating at steady state at 6 bar, 1200 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air enters a turbine operating at steady state at 6 bar, 1600 K and expands to...
Air enters a turbine operating at steady state at 6 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air enters a turbine operating at steady state at 10 bar, 1200 K and expands to...
Air enters a turbine operating at steady state at 10 bar, 1200 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at...
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine (a) the rate power is developed, in kJ per kg of air...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 235 kW. Determine the mass flow rate of air through the compressor. The inlet and exit enthalpies of air are 298.2 kJ/kg and 628.07 kJ/kg. The mass flow rate...
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The...
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The temperature at the inlet to the first turbine stage is 1400 K. The expansion takes place isentropically in two stages, with reheat to 1400 K between the stages at a constant pressure of 300 kPa. A regenerator having an effectiveness of 100% is also incorporated into the cycle. The turbine and the compressor each have am isentropic efficiency of 80%. Determine the following: (a.)...
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s. The turbine inlet temperature is 1800 K. For a compressor pressure ratio of 9, determine: (a) the percent thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW.
Air enters the diffuser of a ramjet engine at 22 kPa, 228 K and a velocity...
Air enters the diffuser of a ramjet engine at 22 kPa, 228 K and a velocity of 920 m/s, decelerating to a negligible velocity at the point at which heat is added. Using cold airstandard analysis with constant specific heats at 300K, determine the following if the exit pressure is 22 kPa and heat is added at 750 kJ per kg of air: (a) The pressure at the diffuser exit, in kPa. (b) The velocity at the nozzle exit, in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT