In: Finance
A mortgage broker is offering a $284,000 20-year mortgage with a teaser rate. In the first two years of the mortgage, the borrower makes monthly payments on only a 5.0 percent APR interest rate. After the second year, the mortgage interest rate charged increases to 8.0 percent APR.
| 
 What are the monthly payments in the first two years? What are the monthly payments after the second year  | 
Asn 1) will use PV of annuity formula
PV of annuity = payment * (1 - (1+r)^-n)/r
where r = 5%/12
n = 20* 12 = 240
PV of annuity = $284000
Payment = $ 1874.27
Amortization schedule for two month is given below:
SO we can find the closing balance end of two year
| Month | Opening Balance | Payment | Interest | Principal Payment | Closing Balance | 
| 1 | $ 284,000.00 | $ 1,874.27 | $ 1,183.33 | $ 690.94 | $ 283,309.06 | 
| 2 | $ 283,309.06 | $ 1,874.27 | $ 1,180.45 | $ 693.82 | $ 282,615.24 | 
| 3 | $ 282,615.24 | $ 1,874.27 | $ 1,177.56 | $ 696.71 | $ 281,918.53 | 
| 4 | $ 281,918.53 | $ 1,874.27 | $ 1,174.66 | $ 699.61 | $ 281,218.91 | 
| 5 | $ 281,218.91 | $ 1,874.27 | $ 1,171.75 | $ 702.53 | $ 280,516.39 | 
| 6 | $ 280,516.39 | $ 1,874.27 | $ 1,168.82 | $ 705.46 | $ 279,810.93 | 
| 7 | $ 279,810.93 | $ 1,874.27 | $ 1,165.88 | $ 708.40 | $ 279,102.53 | 
| 8 | $ 279,102.53 | $ 1,874.27 | $ 1,162.93 | $ 711.35 | $ 278,391.19 | 
| 9 | $ 278,391.19 | $ 1,874.27 | $ 1,159.96 | $ 714.31 | $ 277,676.88 | 
| 10 | $ 277,676.88 | $ 1,874.27 | $ 1,156.99 | $ 717.29 | $ 276,959.59 | 
| 11 | $ 276,959.59 | $ 1,874.27 | $ 1,154.00 | $ 720.28 | $ 276,239.31 | 
| 12 | $ 276,239.31 | $ 1,874.27 | $ 1,151.00 | $ 723.28 | $ 275,516.04 | 
| 13 | $ 275,516.04 | $ 1,874.27 | $ 1,147.98 | $ 726.29 | $ 274,789.74 | 
| 14 | $ 274,789.74 | $ 1,874.27 | $ 1,144.96 | $ 729.32 | $ 274,060.43 | 
| 15 | $ 274,060.43 | $ 1,874.27 | $ 1,141.92 | $ 732.36 | $ 273,328.07 | 
| 16 | $ 273,328.07 | $ 1,874.27 | $ 1,138.87 | $ 735.41 | $ 272,592.66 | 
| 17 | $ 272,592.66 | $ 1,874.27 | $ 1,135.80 | $ 738.47 | $ 271,854.19 | 
| 18 | $ 271,854.19 | $ 1,874.27 | $ 1,132.73 | $ 741.55 | $ 271,112.64 | 
| 19 | $ 271,112.64 | $ 1,874.27 | $ 1,129.64 | $ 744.64 | $ 270,368.01 | 
| 20 | $ 270,368.01 | $ 1,874.27 | $ 1,126.53 | $ 747.74 | $ 269,620.27 | 
| 21 | $ 269,620.27 | $ 1,874.27 | $ 1,123.42 | $ 750.86 | $ 268,869.41 | 
| 22 | $ 268,869.41 | $ 1,874.27 | $ 1,120.29 | $ 753.99 | $ 268,115.42 | 
| 23 | $ 268,115.42 | $ 1,874.27 | $ 1,117.15 | $ 757.13 | $ 267,358.30 | 
| 24 | $ 267,358.30 | $ 1,874.27 | $ 1,113.99 | $ 760.28 | $ 266,598.02 | 
Ans b) Closing balance end of two year = $266598
Monthly payment after second year is given by following formula
where r = 8%/12 = .67%
n = 216
payment = $2332.63