In: Finance
Calculate E(rxy) for (50%X + 50%Y) portfolio E(rxz) for (50%X + 50%Z) portfolio from the following data:
E(rxy) E(rxz)
(50%X + 50%Y) (50%X + 50%Z)
Yr (t) E(rx) E(ry) E(rz)
2012 8.0 24.0 8.0
2013 10.0 20.0 12.0
2014 12.0 16.0 16.0
2015 14.0 12.0 20.0
2016 16.0 8.0 24.0
Yr (t) | E(rx) | E(ry) | E(rz) |
2012 | 8 | 24 | 8 |
2013 | 10 | 20 | 12 |
2014 | 12 | 16 | 16 |
2015 | 14 | 12 | 20 |
2016 | 16 | 8 | 24 |
E(Rxy) with 50% X and 50% in Y
Weight of X in the portfolio = WX = 0.5, Weight of Y in the portfolio = WY = 0.5
In 2012
E(Rxy) = WX*E[RX] + WY*E[RY] = 0.5*8 + 0.5*24 = 16%
In 2013
E(Rxy) = WX*E[RX] + WY*E[RY] = 0.5*10 + 0.5*20 = 15%
In 2014
E(Rxy) = WX*E[RX] + WY*E[RY] = 0.5*12 + 0.5*16 = 14%
In 2015
E(Rxy) = WX*E[RX] + WY*E[RY] = 0.5*14 + 0.5*12 = 13%
In 2016
E(Rxy) = WX*E[RX] + WY*E[RY] = 0.5*16 + 0.5*8 = 12%
E(Rxz) with 50% X and 50% in Z
Weight of X in the portfolio = WX = 0.5, Weight of Z in the portfolio = WZ = 0.5
In 2012
E(Rxz) = WX*E[RX] + WZ*E[RZ] = 0.5*8 + 0.5*8 = 8%
In 2013
E(Rxz) = WX*E[RX] + WZ*E[RZ] = 0.5*10 + 0.5*12 = 11%
In 2014
E(Rxz) = WX*E[RX] + WZ*E[RZ] = 0.5*12 + 0.5*16 = 14%
In 2015
E(Rxz) = WX*E[RX] + WZ*E[RZ] = 0.5*14 + 0.5*20 = 17%
In 2016
E(Rxz) = WX*E[RX] + WZ*E[RZ] = 0.5*16 + 0.5*24 = 20%
Answer
Yr (t) | E(rx) | E(ry) | E(rz) | E(rxy) | E(rxz) |
2012 | 8 | 24 | 8 | 16 | 8 |
2013 | 10 | 20 | 12 | 15 | 11 |
2014 | 12 | 16 | 16 | 14 | 14 |
2015 | 14 | 12 | 20 | 13 | 17 |
2016 | 16 | 8 | 24 | 12 | 20 |