In: Economics
Use the following to answer questions 6-10:
Suppose that firms 1, and 2 are Cournot duopolists in the salt industry. The market demand curve can be specified as Q=20-p, Q=q1+q2
(The firms choose their quantities simultaneously.)
The cost to firm 1 is C(q1)=1q1.
The cost to firm 2 is C(q2)=2q2.
6) Find Firm 1 optimal production levels q1=?.
Select one:
a.
0<q1<2
b.
2<q1<4
c.
4<q1<6
d.
6<q1
e.
None of the above
7) Find Firm 2 optimal production levels q2=?.
Select one:
a.
0<q2<2
b.
2<q2<4
c.
4<q2<6
d.
6<q2
e.
None of the above
8) Determine the equilibrium price? (p=?)
Select one:
a.
0<P<3
b.
3<P<4
c.
4<P<5
d.
5<P
e. None of the above
9) Firm 1 will earn? (pi1=?)
Select one:
a.
0<Pi1<10
b.
10<Pi1<20
c.
20<Pi1<22
d.
22<Pi1<23
e.
None of the above
10) Firm 2 will earn? (pi2=?)
Select one:
a.
0<Pi2<10
b.
10<Pi2<20
c.
20<Pi2<22
d.
22<Pi2<23
e.
None of the above
Q = 20 - p
p = 20 - Q = 20 - q1 - q2
MC1 = dC1/dq1 = 1
MC2 = dC2/dq2 = 2
For firm 1,
TR1 = p x q1 = 20q1 - q12 - q1q2
MR1 = TR1/q1 = 20 - 2q1 - q2
Setting MR1 = MC1,
20 - 2q1 - q2 = 1
2q1 + q2 = 19.........(1) (best response, firm 1)
For firm 2,
TR2 = p x q2 = 20q2 - q1q2 - q22
MR2 = TR2/q2 = 20 - q1 - 2q2
Setting MR2 = MC2,
20 - q1 - 2q2 = 2
q1 + 2q2 = 18.........(2) (best response, firm 2)
(2) x 2 yields:
2q1 + 4q2 = 36.......(3)
2q2 + q2 = 19.......(1)
(3) - (1) yields:
3q2 = 17
q2 = 5.67
q1 = 18 - 2q2 [from (2)] = 18 - (2 x 5.67) = 18 - 11.34 = 6.66
Q = 6.66 + 5.67 = 12.33
P = 20 - 12.33 = 7.67
Profit, firm 1 = q1 x (p - MC1) = 6.66 x (7.67 - 1) = 6.66 x 6.67 = 44.42
Profit, firm 2 = q2 x (p - MC2) = 5.67 x (7.67 - 2) = 5.67 x 5.67 = 32.15
Therefore:
(6) (d)
(7) (c)
(8) (d)
(9) (e)
(10) (e)