Question

In: Advanced Math

Suppose y1 = -6e3t - 6t2 and y2 = 4e-2t - 6t2 are both solutions of...

Suppose y1 = -6e3t - 6t2 and y2 = 4e-2t - 6t2 are both solutions of a certain nonhomogeneous equation: y'' + by' + cy = g(t).

a. Is y = 12e3t - 4e-2t + 6t2 also a solution of the equation?

b. Is y = -6t2 also a solution of the equation?

c. Could any constant function y = c also be a solution? If so, find all possible c.

d. What is the general solution of the equation?

e. Determine the coefficients b, c, and g(t) in the equation above.

Solutions

Expert Solution


Related Solutions

Suppose that Y1 and Y2 are jointly distributed with joint pdf: f(y1,y2) ={cy2. for 0 ≤...
Suppose that Y1 and Y2 are jointly distributed with joint pdf: f(y1,y2) ={cy2. for 0 ≤ y1 ≤ y2 ≤ 1 0. otherwise} (1) Find c value. (2) Are Y1 and Y2 independent? Justify your answer. (3) ComputeCov(Y1,Y2). (4) Find the conditional density of Y1 given Y2=y2. (5) Using (d), find the conditional expectation E (Y1|Y2). (6) Suppose that X1=Y1+Y2, and X2= 2Y2. What is the joint density ofX1andX2?
Suppose that Y1 and Y2 are random variables with joint pdf given by f(y1,y2) = ky1y2...
Suppose that Y1 and Y2 are random variables with joint pdf given by f(y1,y2) = ky1y2 ; 0 < y1 <y2 <1, where k is a constant equal to 8. a) Find the conditional expected value and variance of Y1 given Y2=y2. b) Are Y1 and Y2 independent? Justify your answer. c) Find the covariance and correlation between Y1 and Y2. d) Find the expected value and variance of Y1+Y2.
a) verify that y1 and y2 are fundamental solutions b) find the general solution for the...
a) verify that y1 and y2 are fundamental solutions b) find the general solution for the given differential equation c) find a particular solution that satisfies the specified initial conditions for the given differential equation 1. y'' + y' = 0; y1 = 1 y2 = e^-x; y(0) = -2 y'(0) = 8 2. x^2y'' - xy' + y = 0; y1 = x y2 = xlnx; y(1) = 7 y'(1) = 2
Let Y1 and Y2 have joint pdf f(y1, y2) = (6(1−y2), if 0≤y1≤y2≤1 0, otherwise. a)...
Let Y1 and Y2 have joint pdf f(y1, y2) = (6(1−y2), if 0≤y1≤y2≤1 0, otherwise. a) Are Y1 and Y2 independent? Why? b) Find Cov(Y1, Y2). c) Find V(Y1−Y2). d) Find Var(Y1|Y2=y2).
a) The functions y1 = x^2 and y2 = x^5 are two solutions of the equation...
a) The functions y1 = x^2 and y2 = x^5 are two solutions of the equation x^2 y ″ − 6 x y ′ + 10 y = 0. Let  y be the solution of the equation x^2 y ″ − 6 x y ′ + 10 y = 3 x^5 satisfyng the conditions y ( 1 ) = 0 and  y ′ ( 1 ) = 1. Find the value of the function  f ( x ) = y ( x )...
a) Verify that y1 and y2 are fundamental solutions of the given homogenous second-order linear differential...
a) Verify that y1 and y2 are fundamental solutions of the given homogenous second-order linear differential equation b) find the general solution for the given differential equation c) find a particular solution that satisfies the specified initial conditions for the given differential equation y'' - y = 0 y1 = e^x, y2 = e^-x : y(0) = 0, y'(0) = 5
We define a relation ∼ on R^2 by (x1,y1)∼(x2,y2) if and only if (y2−y1) ∈ 2Z....
We define a relation ∼ on R^2 by (x1,y1)∼(x2,y2) if and only if (y2−y1) ∈ 2Z. Show that the relation∼is an equivalence relation and describe the equivalence class of the point (0,1).
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with...
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with the variables Xi normally distributed with mean μ1 and variance σ12 and the variables Yi normally distributed with mean μ2 and variance σ22. The difference between the sample means, X − Y, is then a linear combination of m + n normally distributed random variables and, by this theorem, is itself normally distributed. (a) Find E(X − Y). (b) Find V(X − Y). (c)...
Let c(y1, y2) = y1 + y2 + (y1y2)^ −(1/3). Does this cost function have economies...
Let c(y1, y2) = y1 + y2 + (y1y2)^ −(1/3). Does this cost function have economies of scale for y1? What about economies of scope for any strictly positive y1 and y2. Hint, economies of scope exist if for a positive set of y1 and y2, c(y1, y2) < c(y1, 0) + c(0, y2). [Hint: Be very careful to handle the case of y2 = 0 separately.]
Two waves y1(x,t) and y2(x,t) propagate in the air: y1 = A sin(6x - 12t) y2...
Two waves y1(x,t) and y2(x,t) propagate in the air: y1 = A sin(6x - 12t) y2 = A sin(5x - 10t) Find: a) The equation of the resulting pulse, y1 + y2. b) The distance between 2 consecutive zeros in the elongation. c) The distance between 2 consecutive absolute maxima of the elongation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT