Question

In: Economics

Consider a general model of intertemporal consumption. Paul lives for two periods, working in the first...

Consider a general model of intertemporal consumption. Paul lives for two periods, working in the first and retiring in the second. Paul’s income is 1000 in the first period and is 0 in the second period. He must decide how much to consume in the first period and how much to save for consumption in the second period. Any money that Paul saves in the first period will earn a 5% interest. For the questions below, you only need to write the budget constraints and don’t need to solve the maximization problem.

(a) (5 points) Write Paul’s consumption in the second period (c2) as a function of his consumption in the first period (c1). Note that any of Paul’s income in the first period that is not consumed will be saved.

(b) (5 points) If Paul must pay a 25% tax on his income in the first period, how would your answers to question (a) change?

(c) (5 points) Now assume that Paul must pay a 25% tax on his income in the first period and a 20% tax on his interest income in the second period, how do your answers to question (b) change?

Solutions

Expert Solution


Related Solutions

Assume a consumer lives for two periods. His income and consumption in the two periods are...
Assume a consumer lives for two periods. His income and consumption in the two periods are Y1 and C1, and Y2 and C2 respectively. Ignore price level changes and further assume that this consumer saves income (S) in the first period and this saving earns interest. With consumption in two periods being constrained by income in the two periods derive the intertemporal budget constraint.
Consider an agent who lives two periods. He is unemployed at the beginning of the first...
Consider an agent who lives two periods. He is unemployed at the beginning of the first period and has a wage offer of w. If he accepts the wage offer w, he will work at that wage in both periods. If he rejects the o§er, he receives unemployment benefit of $4 this period and he gets to draw a new wage offer next period. There are only two possible offers with equal probability next period: one wage offer at $8,...
Consider an individual that lives for two periods. She only works in the first period and...
Consider an individual that lives for two periods. She only works in the first period and receives a labor income equal to 200 Euros. Additionally, this individual receives a non-labor income equal to 20 Euros in each period. The interest rate in the economy is 10 %. She can consume in period 1 (c1) and in period 2 (c2). The price of the consumption good is equal to 1 in both periods. The individual has a Cobb-Douglas utility function of...
Suppose that a consumer lives for two periods: working age and retirement age. The consumer works...
Suppose that a consumer lives for two periods: working age and retirement age. The consumer works during their working age, and does not work during their retirement age. a) Write out the consumer’s budget constraint. Draw the budget constraint, with correct labelling. b) Briefly explain how the following variables are likely to affect how much the consumer will save (ceteris paribus): (i) Discount rate, (ii) interest rate, (iii) uncertainty about retirement age income. c) Now suppose that there is a...
An Individual lives for two periods, 1 and 2. In the first he works and earn...
An Individual lives for two periods, 1 and 2. In the first he works and earn an income of M. In the second he is retired and has no income. His/her life time utility is a function of how much he consumes in the two periods. C1 denotes consumption in period 1 and C2 consumption in period 2. (Hint: If you want to, you can view and treat C1 and C2 as any pair of “goods”, e.g. good x and...
An Individual lives for two periods, 1 and 2. In the first he works and earn...
An Individual lives for two periods, 1 and 2. In the first he works and earn an income of M. In the second he is retired and has no income. His/her life time utility is a function of how much he consumes in the two periods. C1 denotes consumption in period 1 and C2 consumption in period 2. (Hint: If you want to, you can view and treat C1 and C2 as any pair of “goods”, e.g. good x and...
An Individual lives for two periods, 1 and 2. In the first he works and earn...
An Individual lives for two periods, 1 and 2. In the first he works and earn an income of M. In the second he is retired and has no income. His/her life time utility is a function of how much he consumes in the two periods. C1 denotes consumption in period 1 and C2 consumption in period 2. (Hint: If you want to, you can view and treat C1 and C2 as any pair of “goods”, e.g. good x and...
Jenifer lives two periods. In the first period her income is fixed at $10,000; in the...
Jenifer lives two periods. In the first period her income is fixed at $10,000; in the second it is $20,000. She can borrow and lend at a rate of 10%. The interest rate increases to 15%. Intuitively (you don’t have to draw the graph) what do you expect this to do to her saving? Explain. Imagine Jenifer can only save, but cannot borrow. If she still faces an interest rate of 10%, show her budget constraint. Would this borrowing constraint...
Consider the following two-period Fisher model of consumption. Jamil earns $600 in the first period and...
Consider the following two-period Fisher model of consumption. Jamil earns $600 in the first period and $0 in the second period. The interest rate is 10 percent. His lifetime utility function is log(?1 ) + 0.5log(?2). a) Find the optimal values of ?1 and ?2. Answer: ?? = ???, ?? = ??? b) Suppose that the lifetime utility function changes to log(?1 ) + log(?2). Calculate the new optimal values of ?1 and ?2. How is the optimal value of...
Recall the basic model of consumption choice. There are two periods: present and future. Assume households...
Recall the basic model of consumption choice. There are two periods: present and future. Assume households have the following lifetime utility: u(c) + βu(c f ) where u(c) = √ c, the discount rate β < 1 (i.e., the rate at which households discount utility from future consumption). Assume also that households start with no initial wealth, a = 0, but receive income today, y, and income tomorrow, y f . The interest rate, r, is equal to 4%. Assume...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT