Question

In: Physics

A 3.4 kg box rests on a 17 degree inclined plane. How much of its weight...

A 3.4 kg box rests on a 17 degree inclined plane. How much of its weight is pulling it down the ramp? How much of its weight is directed perpendicularly to the ramp?

Solutions

Expert Solution

The weight due to gravity of the box in question will be

The component weight pulling it down the ramp will act parallel to the inclined surface of the ramp.

The component of weight directed perpendicular to the ramp will be,well, perpendicular to the ramp.

The total weight, which is the resultant of these two components, will act vertically downward.

This is depicted in the below diagram.

From trigonometry, we can see that the component parallel to the slope makes an angle of with the main weight vector.

Therefore, the component of the weight parallel to the slope is

We can also that the component perpendicular to the ramp makes an angle of with main weight vector.

Therefore, the component of the weight perpendicular to the slope is

Now, we can put our values for and .


Related Solutions

A block of mass 5 kg rests on a 30° inclined plane. The surface is rough....
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough. The coefficient of friction between the surface and the block is 0.5. Find the frictional force exerted by the plane on the block. (N)
A 4.00-kg block rests on an inclined plane that has an inclination angle of 31.3o. A...
A 4.00-kg block rests on an inclined plane that has an inclination angle of 31.3o. A string attached to this block, goes uphill and over a frictionless pulley, and then is attached to a hanging block of mass M. The inclined plane has coefficients of friction μs = 0.22 and μk = 0.13. Draw a real world picture of this scenario. Draw the free body diagrams for each of the blocks. Show how to determine the mass M that will...
The initial speed of a 2.17-kg box traveling up a plane inclined 37° to the horizontal...
The initial speed of a 2.17-kg box traveling up a plane inclined 37° to the horizontal is 3.23 m/s. The coefficient of kinetic friction between the box and the plane is 0.30. (a) How far along the incline does the box travel before coming to a stop? m (b) What is its speed when it has traveled half the distance found in Part (a)? m/s
A block weighing 82.5 N rests on a plane inclined at 28.8° to the horizontal. The...
A block weighing 82.5 N rests on a plane inclined at 28.8° to the horizontal. The coefficient of the static and kinetic frictions are 0.25 and 0.12 respectively. What is the minimum magnitude of the force F, parallel to the plane, that will prevent the block from slipping? What is the minimum magnitude of F that will start the block moving up the plane? What is the magnitude of F is required to move the block up the plane at...
A 4 kg block is placed at the top of an inclined plane. The plane is...
A 4 kg block is placed at the top of an inclined plane. The plane is 2.5 meters long and inclined at 34°. The coefficient of kinetic friction between the block and plane is 0.27. The block slides the 2.0 meters down the ramp. What speed does it have at the bottom?
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the static case a.    What is the...
A 336-kg crate rests on a surface that is inclined above the horizontal at an angle...
A 336-kg crate rests on a surface that is inclined above the horizontal at an angle of 17.2°. A horizontal force (magnitude = 405 N and parallel to the ground, not the incline) is required to start the crate moving down the incline. What is the coefficient of static friction between the crate and the incline?
A 10 kg block is placed on an inclined plane that is at an angle of...
A 10 kg block is placed on an inclined plane that is at an angle of 30 degrees with respect to the horizontal. THe coefficient of kinetic friction between the block and the plane is .1. The block is released from rest at 5m above a spring that is also lying on the plane. The spring has a constant of 50 N/m. What is the max compression of the spring?
A loaded penguin sled weighing 73.0 N rests on a plane inclined at angle θ =...
A loaded penguin sled weighing 73.0 N rests on a plane inclined at angle θ = 21.0° to the horizontal (see the figure). Between the sled and the plane, the coefficient of static friction is 0.230, and the coefficient of kinetic friction is 0.160. (a) What is the minimum magnitude of the force , parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude F that will start the sled...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT