Question

In: Physics

A loaded penguin sled weighing 73.0 N rests on a plane inclined at angle θ =...

A loaded penguin sled weighing 73.0 N rests on a plane inclined at angle θ = 21.0° to the horizontal (see the figure). Between the sled and the plane, the coefficient of static friction is 0.230, and the coefficient of kinetic friction is 0.160. (a) What is the minimum magnitude of the force , parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude F that will start the sled moving up the plane? (c) What value of F is required to move the sled up the plane at constant velocity?

Solutions

Expert Solution


Related Solutions

A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ = 26.5° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.41 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
8. A cart slides down an inclined plane with the angle of the incline θ starting...
8. A cart slides down an inclined plane with the angle of the incline θ starting from rest. At the moment the cart begins to move, a ball is launched from the cart perpendicularly to the incline. (a) Choosing an x-y-coordinate system with the x-axis along the incline and the origin at the initial location of the cart, derive the equation of the trajectory that the ball assumes from the perspective of this coordinate system. (b) Determine where the maximum...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the static case a.    What is the...
A 336-kg crate rests on a surface that is inclined above the horizontal at an angle...
A 336-kg crate rests on a surface that is inclined above the horizontal at an angle of 17.2°. A horizontal force (magnitude = 405 N and parallel to the ground, not the incline) is required to start the crate moving down the incline. What is the coefficient of static friction between the crate and the incline?
A uniform ladder rests against a frictionless wall at an angle of θ = 48.0° with...
A uniform ladder rests against a frictionless wall at an angle of θ = 48.0° with respect to the ground. If the weight of the ladder is WL = 250 N, the length is L = 9.0 m, and the coefficient of static friction between the ladder and the ground is μs = 0.60, determine the distance a man with a weight of WM = 900 N can climb along the ladder before the ladder begins to slip m?
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough....
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough. The coefficient of friction between the surface and the block is 0.5. Find the frictional force exerted by the plane on the block. (N)
(Please explain briefly) A frictionless plane is 10.0 m long and inclined at 28.0°. A sled...
(Please explain briefly) A frictionless plane is 10.0 m long and inclined at 28.0°. A sled starts at the bottom with an initial speed of 5.70 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed vi. Both sleds reach the bottom of the incline at the same moment. (a) Determine the distance that the first sled traveled up the...
Driving down a hill inclined at an angle θ with respect to horizontal, you slam on...
Driving down a hill inclined at an angle θ with respect to horizontal, you slam on the brakes to keep from hitting a deer. Your antilock brakes kick in, and you don’t skid. (a) Analyze the forces. (Ignore rolling resistance and air friction.) (b) Find the car’s maximum possible deceleration, a (expressed as a positive number), in terms of g, θ, and the relevant coefficient of friction. √ (c) Explain physically why the car’s mass has no effect on your...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from...
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from the horizontal. It is given an initial velocity v0 = 15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is μk = 0.382 and the coefficient of static friction is μs = 0.687. How far up the ramp (in the direction along the ramp) does the block go before it comes to a stop? ___________m
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT