In: Statistics and Probability
Solution :
Given that,
= 45
s = 14
n = 49
The standard error = (s /n)
= (14 / 49)
= 2
The standard error = 2
Degrees of freedom = df = n - 1 =49 - 1 = 48
b ) At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
t /2,df = t0.025,48 = 2.011
Margin of error = E = t/2,df * (s /n)
= 2.011 * (14 / 49)
= 4.02
Margin of error = 4.02
The 95% confidence interval estimate of the population mean is,
- E < < + E
45 - 4.02 < < 45 + 4.02
40.98 < < 49.02
(40.98, 49.02 )
c ) At 99% confidence level the t is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
t /2,df = t0.005,48 = 2.682
Margin of error = E = t/2,df * (s /n)
= 2.682 * (14 / 49)
= 5.36
Margin of error = 5.36
The 98% confidence interval estimate of the population mean is,
- E < < + E
45 - 5.36 < < 45 + 5.36
39.64< < 50.36
(39.64, 50.36 )
c ) The confidence interval level increase of the margin of errors is wider.