Question

In: Finance

Consider an option on a non-dividend paying stock when the stock price is $67, the exercise...

Consider an option on a non-dividend paying stock when the stock price is $67, the exercise price is $61, the risk-free rate is 0.5%, the market volatility is 30% and the time to maturity is 6 months. Using the Black-Scholes Model

(i) Compute the price of the option if it is a European Call.

(ii) Compute the price of the option if it is an American Call.

(iii) Compute the price of the option if it is a European Put.

(iv) Assuming two dividend payments $1.75 and $2.75, two months and five months from now, compute the price of the option if it is a European Call.

(v) Refer to the dividend information provided in (iv) above. Compute the price of the option if it is an American Call. Provide a graphical illustration to demonstrate how the price of this American Call and the payoff from the same change with respect to changes in the stock price.

Solutions

Expert Solution

Solution:

i)

ii) In case of Call Option of a non dividend paying stock, the Price of the American Call option is the same as that of the European Call option, i.e., in this case it would be $8.42.

iii) To compute the price of the European put option we would use Put Call Parity, i.e.,

  • Price of Put (P) + Stock Price (S) = Price of Call (C) + Present value of Strike Price (K)

therefore,

P = C + PV of K - S

P = 8.42 + 61/e .0025 - 67

P = 8.42 + 61/1.025 - 67

P = $ 0.9139

iv) In case where the stock is a dividend paying stock, the price of the stock needs to be adjusted with the present value of the expected dividend. We shall denote the value by (S*).

Note: t* used in the answer above denotes the period within which the dividend is expected.


Related Solutions

Consider an option on a non-dividend paying stock when the stock price is $67, the exercise...
Consider an option on a non-dividend paying stock when the stock price is $67, the exercise price is $61, the risk-free rate is 0.5%, the market volatility is 30% and the time to maturity is 6 months. Using the Black-Scholes Model when necessary (i) Compute the price of the option if it is a European Call. (ii) Compute the price of the option if it is an American Call. (iii) Compute the price of the option if it is a...
) Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise...
) Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price is $28, the risk-free interest rate is 5% per annum, the volatility is 30% per annum, and the time to maturity is four months. (a) What is the price of the option if it is a European call? (b) What is the price of the option if it is an American call? (c) What is the price of the option if it is...
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price...
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free interest rate is 5% per annum, the volatility is 25% per annum, and the time to maturity is four months. 1. What is the price of the option if it is a European call? 2. What is the price of the option if it is an American call?
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price...
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free interest rate is 5% per annum, the volatility is 25% per annum, and the time to maturity is four months. What is the price of the option if it is a European call? What is the price of the option if it is an American call? What is the price of the option if it is a European put? Verify...
Consider an option on a non-dividend-paying stock when the stock price is $48, the exercise price...
Consider an option on a non-dividend-paying stock when the stock price is $48, the exercise price is $46, the risk-free interest rate is 6% per annum, the volatility is 20% per annum, and time to maturity is four months. (a) What is the price of the option if it is a European call? (b) What is the price of the option if it is a European put? (c) What is the price of the option if it is an American...
Consider a European option on a non-dividend-paying stock when the stock price is $30, the exercise...
Consider a European option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, continuously compounded risk-free interest rate is 5%, volatility is 25% per annum, and time to maturity is 4 months (assume 4 months equals 120 days). - Find the value of a call option at strike price of $29 using the Black-Scholes option pricing model. Show all steps using Excel. - Find the value of a put option at strike price of...
Consider a put option on a non-dividend-paying stock when the stock price is $30, the exercise...
Consider a put option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free rate is 5%, the volatility is 25% per annum, and the time to maturity is four months. Use a 2-period binomial model to price this same option. Use Black-Scholes formula to value this option How much the European call option on this stock with the same strike (E) and time to maturity (T) will cost? How much the American...
Consider a put option on a non-dividend-paying stock when the stock price is $30, the exercise...
Consider a put option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free rate is 5%, the volatility is 25% per annum, and the time to maturity is four months. Use a 2-period binomial model to price this same option. Use Black-Scholes formula to value this option How much the European call option on this stock with the same strike (E) and time to maturity (T) will cost? How much the American...
Consider a put option on a non-dividend-paying stock when the stock price is $30, the exercise...
Consider a put option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free rate is 5%, the volatility is 25% per annum, and the time to maturity is four months. Use a 2-period binomial model to price this same option. Use Black-Scholes formula to value this option How much the European call option on this stock with the same strike (E) and time to maturity (T) will cost? How much the American...
Consider a European option on a non-dividend-paying stock when the stock price is $30, the exercise...
Consider a European option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, continuously compounded risk-free interest rate is 5%, volatility is 25% per annum, and time to maturity is 4 months (assume 4 months equals 120 days). Find the value of a call option at the strike price of $29 using the Black-Scholes option pricing model. Show all steps. Find the value of a put option at the strike price of $29 using...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT