In: Math
Age (X) | Time (Y) |
34 | 123,556.00 |
17 | 92,425.00 |
42 | 250,908.00 |
35 | 204,540.00 |
19 | 77,897.00 |
43 | 197,012.00 |
51 | 195,126.00 |
50 | 177,100.00 |
22 | 83,230.00 |
58 | 140,012.00 |
48 | 265,296.00 |
35 | 189,420.00 |
39 | 235,872.00 |
39 | 230,724.00 |
59 | 238,655.00 |
40 | 138,560.00 |
60 | 259,680.00 |
22 | 93,208.00 |
33 | 91,212.00 |
36 | 153,216.00 |
28 | 77,308.00 |
22 | 56,496.00 |
28 | 106,652.00 |
44 | 242,748.00 |
54 | 195,858.00 |
30 | 178,560.00 |
28 | 190,876.00 |
16 | 98,528.00 |
52 | 169,572.00 |
22 | 79,420.00 |
28 | 167,928.00 |
35 | 215,705.00 |
50 | 146,350.00 |
3. The strength of the correlation motivates further examination.
a. Insert Scatter (X,Y) plot linked to the data on this s heet with Age on the horizontal (X) axis.
b. Add to your chart: the chart name, vertical axis label, and horizontal axis label
c. Complete the chart by adding Trendline and checking boxes: Display Equation on chart & Display R-squared value on chart
4. Read directly from the chart:
a. Intercept =
b. Slope =
c. R2 =
Perform Data > Data Analysis > Regression
5. Highlight the Y-Intercept with yellow. Highlight the X variable in blue. Highlight the R Square in orange.
3 & 5. The scatterplot is:
4. a. Intercept =39030
b. Slope =3342.6
c. R2 = 0.4703
The regression result is:
Regression Statistics | ||||||||
Multiple R | 0.685795 | |||||||
R Square | 0.470314 | |||||||
Adjusted R Square | 0.453228 | |||||||
Standard Error | 46057.65 | |||||||
Observations | 33 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 5.84E+10 | 5.84E+10 | 27.52528 | 1.06E-05 | |||
Residual | 31 | 6.58E+10 | 2.12E+09 | |||||
Total | 32 | 1.24E+11 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 39029.92 | 24863.07 | 1.569795 | 0.126615 | -11678.6 | 89738.49 | -11678.6 | 89738.49 |
Age (X) | 3342.627 | 637.1213 | 5.246454 | 1.06E-05 | 2043.21 | 4642.045 | 2043.21 | 4642.045 |