Question

In: Math

An important application of regression analysis in accounting is in the estimation of cost. By collecting...

An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 4,700 450 5,700 550 6,100 600 6,600 700 7,100 750 7,700 Compute b1 and b0 (to 1 decimal). b1 b0 Complete the estimated regression equation (to 1 decimal). = + x What is the variable cost per unit produced (to 1 decimal)? $ Compute the coefficient of determination (to 3 decimals). Note: report r2 between 0 and 1. r2 = What percentage of the variation in total cost can be explained by the production volume (to 1 decimal)? % The company's production schedule shows 500 units must be produced next month. What is the estimated total cost for this operation (to the nearest whole number)? $

Solutions

Expert Solution

Explanation:

The regression model is defined as,

where Y = Total COst and X = Production Volume

The least-square estimate of the intercept and slope are obtained in excel. The screenshot is shown below,

The estimated regression equation is,

coefficient of determination = 0.959

Explanation:

The coefficient of determination (r square) value is obtained in excel using the function =RSQ(). The screenshot is shown above,

95.9% of the variation in total cost can be explained by the production volume.

Explanation:

The r square value tells how well the regression model fits the data values. The r squared value is 0.959 which means 95.9% of the variation in total cost can be explained by the production volume.

Estimated total cost = $5747.

Explanation:

using the regression equation,

For X = 500,


Related Solutions

An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. In the Microsoft Excel Online file below you will find a sample of production volumes and total cost data for a manufacturing operation. Conduct a regression analysis to explore the relationship...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 3,700 450 4,700 550 5,100 600 5,600 700 6,100...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 4,200 450 5,200 550 5,600 600 6,100 700 6,600...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. In the Microsoft Excel Online file below you will find a sample of production volumes and total cost data for a manufacturing operation. Conduct a regression analysis to explore the relationship...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. In the Microsoft Excel Online file below you will find a sample of production volumes and total cost data for a manufacturing operation. Conduct a regression analysis to explore the relationship...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 3,500 450 4,500 550 4,900 600 5,400 700 5,900...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 4,400 450 5,400 550 5,800 600 6,300 700 6,800...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 4,000 450 5,000 550 5,400 600 5,900 700 6,400...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 4,200 450 5,200 550 5,600 600 6,100 700 6,600...
An important application of regression analysis in accounting is in the estimation of cost. By collecting...
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume (units) Total Cost ($) 400 4,100 450 5,100 550 5,500 600 6,000 700 6,500...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT