Question

In: Statistics and Probability

In a sample of 10 randomly selected women, it was found that their mean height was...

In a sample of 10 randomly selected women, it was found that their mean height was 63.4 inches. From previous studies, it is assumed that the standard deviation σ is 2.4 and that the population of height measurements is normally distributed. Construct the 99% confidence interval for the population mean.

(60.8, 65.4)

(58.1, 67.3)

(61.4, 65.4)

(59.7, 66.5)

Solutions

Expert Solution

Solution :

Given that,

Point estimate = sample mean = = 63.4

Population standard deviation = = 2.4

Sample size = n = 10

At 99% confidence level the z is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

Z/2 = Z0.005 = 2.576

Margin of error = E = Z/2* ( /n)

= 2.576 * (2.4 / 10)

= 2.0

At 99% confidence interval estimate of the population mean is,

- E < < + E

63.4 - 2.0 < < 63.4 + 2.0

61.4 < < 65.4

(61.4 , 65.4)


Related Solutions

A researcher records the repair cost for 10 10 randomly selected VCRs. A sample mean of...
A researcher records the repair cost for 10 10 randomly selected VCRs. A sample mean of $79.18 $ ⁢ 79.18 and standard deviation of $11.06 $ ⁢ 11.06 are subsequently computed. Determine the 90% 90 % confidence interval for the mean repair cost for the VCRs. Assume the population is approximately normal. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places. Step 2 of 2...
It was determined that the sample mean weight of 10 randomly selected house cats was 8.4...
It was determined that the sample mean weight of 10 randomly selected house cats was 8.4 pounds. We seek to create a 90% confidence interval for the population mean weight of house cats in the United States. Given t.05 found in the question above, and with the knowledge that s = .897 pounds, determine the 90% confidence interval for the population mean. Choose the best answer. Group of answer choices ( 7.760 , 9.040 ) ( 7.887 , 8.913 )...
a sample of 193 randomly selected students , found that the proportion of students planning to...
a sample of 193 randomly selected students , found that the proportion of students planning to travel home for thanksgiving is 0.71
A random sample of 400 men and 400 women was randomly selected and asked whether they...
A random sample of 400 men and 400 women was randomly selected and asked whether they planned to attend a concert in the next month. The results are listed below. Perform a homogeneity of proportions test to test the claim that the proportion of men who plan to attend a concert in the next month is the same as the proportion of women who plan to attend a concert in the next month. Use α = 0.04. men women plan...
Identify the sample and sample statistic - For 186 randomly selected babies, the average (mean) of...
Identify the sample and sample statistic - For 186 randomly selected babies, the average (mean) of their births weights is 3,103 grams (based on data from “Cognitive Outcomes of Preschool Children with Prenatal Cocaine Exposure.” By Singer et al., Journal of the American Association, Vol. 291, No 20). A) Sample-preschool children, statistic birth weights B) Sample-186 babies, statistic 3,103 grams C) Sample 186 babies, statistic Cocaine Exposure What are the absolute and relative errors? – The bakery menu claims that...
A survey of 25 randomly selected customers found the ages shown (in years). The mean is...
A survey of 25 randomly selected customers found the ages shown (in years). The mean is 32.64 years and the standard deviation is 9.97 years. ​a) What is the standard error of the​ mean? ​b) How would the standard error change if the sample size had been 400 instead of 25​? ​(Assume that the sample standard deviation​ didn't change.)
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is 32.24 years and the standard deviation is 9.55 years.​ 30 41 48 36 20 36 37 36 26 27 17 23 39 35 21 10 31 42 32 41 43 28 47 25 35 a) Construct a 90% confidence interval for the mean age of all​ customers, assuming that the assumptions and conditions for the confidence interval have been met. ​b) How large is...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is 31.52 years and the standard deviation is 10.24 years. ​a) Construct a 95​% confidence interval for the mean age of all​ customers, assuming that the assumptions and conditions for the confidence interval have been met. ​b) How large is the margin of​ error? ​c) How would the confidence interval change if you had assumed that the standard deviation was known to be 11.0 ​years?...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is 33.16 years and the standard deviation is 9.33 years.​ a) Construct a 95​% confidence interval for the mean age of all​ customers, assuming that the assumptions and conditions for the confidence interval have been met. ​b) How large is the margin of​ error? ​c) How would the confidence interval change if you had assumed that the standard deviation was known to be 10.0 ​years?...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is...
A survey of 25 randomly selected customers found the ages shown​ (in years). The mean is 32.04 years and the standard deviation is 9.87 years. ​a) Construct a 80% confidence interval for the mean age of all​ customers, assuming that the assumptions and conditions for the confidence interval have been met. ​b) How large is the margin of​ error? ​c) How would the confidence interval change if you had assumed that the standard deviation was known to be 10.0 ​years?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT