In: Finance
Derek borrows $299,744.00 to buy a house. He has a 30-year mortgage with a rate of 5.62%. After making 81.00 payments, how much does he owe on the mortgage?
Answer format: Currency: Round to: 2 decimal places.
Step 1 : | EMI = [P x R x (1+R)^N]/[(1+R)^N-1] | |||||
Where, | ||||||
EMI= Equal Monthly Payment | ||||||
P= Loan Amount | ||||||
R= Interest rate per period =5.62/12% =0.4683333% | ||||||
N= Number of periods =30*12 =360 | ||||||
= [ $299744x0.0046833333 x (1+0.0046833333)^360]/[(1+0.0046833333)^360 -1] | ||||||
= [ $1403.8010566752( 1.0046833333 )^360] / [(1.0046833333 )^360 -1 | ||||||
=$1724.54494 | ||||||
Step 2 : | Present Value Of An Annuity | |||||
= C*[1-(1+i)^-n]/i] | ||||||
Where, | ||||||
C= Cash Flow per period | ||||||
i = interest rate per period =5.62%/12 =0.46833333% | ||||||
n=number of period =(30*12)-81 =279 | ||||||
= $1724.54494[ 1-(1+0.0046833333)^-279 /0.0046833333] | ||||||
= $1724.54494[ 1-(1.0046833333)^-279 /0.0046833333] | ||||||
= $1724.54494[ (0.7284) ] /0.0046833333 | ||||||
= $2,68,236.40 |