Question

In: Economics

Two players take turns taking sticks from a pile of 16 sticks. Each player can take...

Two players take turns taking sticks from a pile of 16 sticks. Each player can take at most 3 sticks and at least 1 stick at each turn. Whoever takes the final stick wins the game. Describe in words the optimal strategy for each player. Is there a first-mover advantage in this game? Is there a second-mover advantage?

Solutions

Expert Solution

There is a second-mover advantage in this game. If played according to the best strategy, the second mover will always win this game. Let's see why.

Le's do some backward induction. the player picking the 16th sick wins. Now, a player can guarantee to pick the 16th stick if it picks the 12th stick ( because if A player picks the 12th stick, the B player can pick a max of 3 sticks and min of 1 stick, thus A player can pick the 16th stick in the next round because the max sticks remaining are 3 and min sticks remaining is 1). Similarly, in order to ensure that a player picks the 12t stick, he must pick the 8th stick and so on till the player has to pick the 4th stick. Now the first mover can not reach the 4th stick in the first chance, but the second mover can, and after that following the strategy he can reach the 8th, 12th, and 16th stick easily.

So the optimal strategy for player 2 is 4 - number of sticks taken by player 1.

Player 1 will always lose. The best it can do is hope for player 2 to miss the best strategy once and then it plays similarly to palyer 1


Related Solutions

In this game, two players sit in front of a pile of 100 stones. They take...
In this game, two players sit in front of a pile of 100 stones. They take turns, each removing between 1 and 5 stones (assuming there are at least 5 stones left in the pile). The person who removes the last stone(s) wins. Write a program to play this game. This may seem tricky, so break it down into parts. Like many programs, we have to use nested loops (one loop inside another). In the outermost loop, we want to...
There are 21 pennies on a table between two players. The two players take turns removing...
There are 21 pennies on a table between two players. The two players take turns removing either 1, 2 or 3 pennies at a time. The player who takes the last penny loses. Use backward induction to come up with a strategy that the player who takes the second turn in the game can use to guarantee that she wins the game.
Consider a game in which two players, Fred and Barney, take turns removing matchsticks from a...
Consider a game in which two players, Fred and Barney, take turns removing matchsticks from a pile. They start with 21 matchsticks, and Fred goes first. On each turn, each player may remove either one, two, or three matchsticks. The player to remove the last matchstick wins the game. (a) Suppose there are only 5 matchsticks left, and it is Fred’s turn. What move should Fred make to guarantee himself victory? Explain your reasoning. (b) Suppose there are 10 matchsticks...
There are 100 coins in a jar. Two players take turns removing anywhere from 1-10 coins...
There are 100 coins in a jar. Two players take turns removing anywhere from 1-10 coins from the jar. The player who empties the jar by removing the remaining coin(s) wins the game. To guarantee that you win the game, would you choose to move first or second, and what strategy would you follow?
There are two players in the game. Each player can pick any integer number between 1...
There are two players in the game. Each player can pick any integer number between 1 and n. If two numbers are the same then player 1 pays 1 dollar to player 2. If two numbers are different than nothing happens. (a) Prove that there are no equilibria in pure strategies; (b) Prove that in the equilibrium each strategy should be played with a positive probability. (c) Find all NE of the game.
Suppose two players take turns playing another version of the parlor game discussed in class on...
Suppose two players take turns playing another version of the parlor game discussed in class on Tuesday. In this version, players can say any whole number between 1 and 10. The first person to get the running total to 25 wins. Do you want to go first or second? Figure out the optimal strategy for this game. Show your work. (b) (5 points) ECN-322 only for this part: Suppose two players take turns playing another version of the parlor game...
Coin taking game This game is played between 2 players, player 1 and player 2. There...
Coin taking game This game is played between 2 players, player 1 and player 2. There are two piles of coins. The values of a coin can be any integer. Both players know the values of all coins in both piles. Player 1 makes the first move, and play alternates between the players. A move consists of taking a coin from the top of either of the piles (either player can take from either pile). The game ends when both...
Two players (player A and player B) are playing a game against each other repeatedly until...
Two players (player A and player B) are playing a game against each other repeatedly until one is bankrupt. When a player wins a game they take $1 from the other player. All plays of the game are independent and identical. Suppose player A starts with $6 and player B starts with $6. If player A wins a game with probability 0.5, what is the probability the game ends (someone loses all their money) on exactly the 10th play of...
(10 marks) Two players (player A and player B) are playing a game against each other...
Two players (player A and player B) are playing a game against each other repeatedly until one is bankrupt. When a player wins a game they take $1 from the other player. All plays of the game are independent and identical. a) Suppose player A starts with $2 and player B starts with $1. If player A wins a game with probability p, what is the probability that player A wins all the money? b) Suppose player A starts with...
Two players, 1 and 2, take turns choosing numbers; 1 goes first. On his turn, a...
Two players, 1 and 2, take turns choosing numbers; 1 goes first. On his turn, a player may choose any number between 1 and 10, inclusive, and this number is added to a running total. When the running total of both players’ choices reaches 100, the game ends. The player whose choice of number takes the total to exactly 100 is the winner. (i) Who wins the game when we solve it using backwards induction? (ii) Provide a (not necessarily...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT