In: Finance
A bond has a yield to maturity of 8 percent. It matures in 10 years. Its coupon rate is 8 percent. What is its modified duration? The bond pays coupons twice a year.
(Do not round intermediate calculations. Enter your answers rounded to 2 decimal places.)
Step-1, Calculation of Macaulay Duration of the Bond
Period (1) |
Cash Flow (2) |
Present Value Factor T 4.00% (3) |
Present Value (4) = (3) x (2) |
Weight to total (5) |
Duration (6) = (1) x (5) |
0.50 |
40 |
0.96154 |
38.46 |
0.0385 |
0.02 |
1.00 |
40 |
0.92456 |
36.98 |
0.0370 |
0.04 |
1.50 |
40 |
0.88900 |
35.56 |
0.0356 |
0.05 |
2.00 |
40 |
0.85480 |
34.19 |
0.0342 |
0.07 |
2.50 |
40 |
0.82193 |
32.88 |
0.0329 |
0.08 |
3.00 |
40 |
0.79031 |
31.61 |
0.0316 |
0.09 |
3.50 |
40 |
0.75992 |
30.40 |
0.0304 |
0.11 |
4.00 |
40 |
0.73069 |
29.23 |
0.0292 |
0.12 |
4.50 |
40 |
0.70259 |
28.10 |
0.0281 |
0.13 |
5.00 |
40 |
0.67556 |
27.02 |
0.0270 |
0.14 |
5.50 |
40 |
0.64958 |
25.98 |
0.0260 |
0.14 |
6.00 |
40 |
0.62460 |
24.98 |
0.0250 |
0.15 |
6.50 |
40 |
0.60057 |
24.02 |
0.0240 |
0.16 |
7.00 |
40 |
0.57748 |
23.10 |
0.0231 |
0.16 |
7.50 |
40 |
0.55526 |
22.21 |
0.0222 |
0.17 |
8.00 |
40 |
0.53391 |
21.36 |
0.0214 |
0.17 |
8.50 |
40 |
0.51337 |
20.53 |
0.0205 |
0.17 |
9.00 |
40 |
0.49363 |
19.75 |
0.0197 |
0.18 |
9.50 |
40 |
0.47464 |
18.99 |
0.0190 |
0.18 |
10.00 |
1,040 |
0.45639 |
474.64 |
0.4746 |
4.75 |
TOTAL |
$1,000 |
7.07 Years |
|||
Macaulay Duration = 7.07 Years
Step-2, Calculation of Modified Duration of the Bond
Modified Duration of the Bond = Macaulay Duration / [1 + (YTM / Number of coupon payments per year)]
= 7.07 Years / [1 + (0.08/2)]
= 7.07 Years / 1.04
= 6.80 Years.
“Therefore, The Modified Duration of the Bond = 6.80 Years”