In: Finance
A bond has a yield to maturity of 5 percent. It matures in 13 years. Its coupon rate is 5 percent. What is its modified duration? The bond pays coupons twice a year.
(Do not round intermediate calculations. Enter your answers rounded to 2 decimal places.)
Step-1, Calculation of Macaulay Duration of the Bond
Semi-annual Period (1) |
Cash Flow (2) |
Present Value Factor T 2.50% (3) |
Present Value (4) = (3) x (2) |
Weight to total (5) |
Duration (6) = (1) x (5) |
0.50 |
25 |
0.97561 |
24.39 |
0.0244 |
0.0122 |
1.00 |
25 |
0.95181 |
23.80 |
0.0238 |
0.0238 |
1.50 |
25 |
0.92860 |
23.21 |
0.0232 |
0.0348 |
2.00 |
25 |
0.90595 |
22.65 |
0.0226 |
0.0453 |
2.50 |
25 |
0.88385 |
22.10 |
0.0221 |
0.0552 |
3.00 |
25 |
0.86230 |
21.56 |
0.0216 |
0.0647 |
3.50 |
25 |
0.84127 |
21.03 |
0.0210 |
0.0736 |
4.00 |
25 |
0.82075 |
20.52 |
0.0205 |
0.0821 |
4.50 |
25 |
0.80073 |
20.02 |
0.0200 |
0.0901 |
5.00 |
25 |
0.78120 |
19.53 |
0.0195 |
0.0976 |
5.50 |
25 |
0.76214 |
19.05 |
0.0191 |
0.1048 |
6.00 |
25 |
0.74356 |
18.59 |
0.0186 |
0.1115 |
6.50 |
25 |
0.72542 |
18.14 |
0.0181 |
0.1179 |
7.00 |
25 |
0.70773 |
17.69 |
0.0177 |
0.1239 |
7.50 |
25 |
0.69047 |
17.26 |
0.0173 |
0.1295 |
8.00 |
25 |
0.67362 |
16.84 |
0.0168 |
0.1347 |
8.50 |
25 |
0.65720 |
16.43 |
0.0164 |
0.1397 |
9.00 |
25 |
0.64117 |
16.03 |
0.0160 |
0.1443 |
9.50 |
25 |
0.62553 |
15.64 |
0.0156 |
0.1486 |
10.00 |
25 |
0.61027 |
15.26 |
0.0153 |
0.1526 |
10.50 |
25 |
0.59539 |
14.88 |
0.0149 |
0.1563 |
11.00 |
25 |
0.58086 |
14.52 |
0.0145 |
0.1597 |
11.50 |
25 |
0.56670 |
14.17 |
0.0142 |
0.1629 |
12.00 |
25 |
0.55288 |
13.82 |
0.0138 |
0.1659 |
12.50 |
25 |
0.53939 |
13.48 |
0.0135 |
0.1686 |
13.00 |
1,025 |
0.52623 |
539.39 |
0.5394 |
7.0121 |
TOTAL |
$1,000 |
9.7122 Years |
|||
Macaulay Duration = 9.7122 Years
Step-2, Calculation of Modified Duration of the Bond
Modified Duration of the Bond = Macaulay Duration / [1 + (YTM / Number of coupon payments per year)]
= 9.7122 Years / [1 + (0.05/2)]
= 9.7122 Years / 1.025
= 9.48 Years
“Therefore, the Modified Duration of the Bond will be 9.48 Years”