In: Economics
yA(pA) = 120 - pA
yB(pB) = 200 - pB
A.... From question TC =10Y MC =10 ( Y is quantity of output) YA= 120—PA or PA=120—YA and YB =200—PB or PB =200—YB TRA( total revenue from market segment A) =PA.YA Or TRA = 120YA–YA2 or MRA =d(TRA)/YA =120 —2YA
And TRB = PB . YB = 200 YB —YB2 OR MRB = 200—2YB
Now, at equilibrium in' A' market segment MRA= MC or 120—2YA=10 or YA=55 so optimal quantity =55 Here optimal price =120 —55=65 (put value in A's demand.fun.)
Now, at equilibrium in the market segment B MRB=MC or 200—2YB=10 or YB = 95 (optimal qu.) Here optimal price P= 200—95 =105
B.......Now without price discrimination
Demand function (YA+YB)=(120–P)+(200—P) ; PA=PB Y=320—2P
Inverse demand function 2P=320—Y or P=160 —0.5Y
Total revenue (TR) =P × Y = 160Y —0.5Y2 Marginal revenue (MR) = d(TR)/dy = 160 —Y Now at equilibrium of the firm
MR =MC or 160—Y = 10 or =150(equilibrium q) now, equilibrium price P= 160—0.5×150 =85