Question

In: Economics

2. Consider the simplified national income model:     Y = C + I…………(1)                            Where Y...

2. Consider the simplified national income model:

    Y = C + I…………(1)

                          

Where Y is national income, C is consumption, and I is investment. Consumption is determined by a behavioral equation, which in this problem takes the form

     C= 3000+ .75 Y……..(2)

Where Y and C are endogenous variables and Investment is exogenous, and, initially we assume

I =1000……………….(3)

(2-a) Determine the equilibrium level of national income (Y) and consumption (C) by using the matrix (linear) algebra only.

(2-b) Determine the overall change (comparative statics analysis) of the equilibrium level of national income (Y) and consumption

(2-c) if new I = 600, decreased by 400.

Show Work. Linear Algebra Only!

Solutions

Expert Solution

Here,

Y = C + I

C = 3000 + .75Y

I = 1000

Let us put the a in place of 3000(absolute consumption)

b in place of .75

Now we have

Y = C + I

C = a + bY

We can also write these equations as

Y - C = I

C - bY = a

Putting them in matrix form as

By solving it with Cramer's rule we get

Now putting the values of a,b,I we get

Y = 3000+1000/1-.75 ......(I)

= 16000.

C = 3000+.75×1000/1-.75 ......(ii)

= 15000

This is the equilibrium level of income and consumption.

If I is reduced to 600 let's see the change in equilibrium level of Income and consunconsu by putting 600 in place 1000 in the above given equation (I) and (ii) we get

Y = 3000+ 600/ 1-.75

= 14,400

C = 3000 + 600×.75/ 1-.75

= 13,800

Now we can compare the two equilibrium level and say that as investment was reduced by 400 income went down to 1600

Whereas , consumption went down to 1200

Thus less investment resulted in lesser income and consumption level of the economy.


Related Solutions

Consider the following national-income model. Y = AE(1) AE = C + I0 + G0(2) C...
Consider the following national-income model. Y = AE(1) AE = C + I0 + G0(2) C = C0 + bY 0 < ? < 1(3) (a)Remaining in parametric form (do not sub in parameter values), build the equation for total spending AE (also known as aggregate demand). (b) Continuing in parametric form, find the RFE for equilibrium national income Y* (also known as equilibrium national output). (c) Using the parameter values ?0 = 25, ? = 0.75, ?0= 50, and...
2) Given the following National Income Model: Y = C + I0 + G0 + (X0...
2) Given the following National Income Model: Y = C + I0 + G0 + (X0 - M0) C = 100 + 0.5(Y - T) T = 10 + 0.2Y a. How many endogenous variables are there? b. Find Y*, T*, and C* if: I0 = 17 G0 = 13 X0 = 100 M0 = 150 c. What are the economic meanings of (Y - T) and the coefficient 0.5 in the previous Keynesian consumption equation? d. What is the...
Let Y = GDP (national income).  In equilibrium, Y = C + I + G + X...
Let Y = GDP (national income).  In equilibrium, Y = C + I + G + X - M, with C + I + G represented on a domestic expenditure basis. If Y = C + I + G + X - M, then Y - (C + I + G) = X - M.  If X - M > 0, then Y > C + I + G. How, then, is balance of payments equilibrium achieved?
1. If y=C+I where C= 50+.75 Y and I = 50 What is Y, C, and...
1. If y=C+I where C= 50+.75 Y and I = 50 What is Y, C, and the multiplier? What if instead I = 50+.05Y? 2. If Y=C+I+G where C=C - aTo + Y(a - at) and I= lo + by solve for Y, C, I, and the multiplier. Given a = MPC= .75, MPT = .2, MPI = .15, C = 45, To = 40 Io = 60 and G=90 3. What is the present value of $1,000 paid at...
In an economy which has a national income identity as the following; Y= C + I...
In an economy which has a national income identity as the following; Y= C + I + G + NX Where C = 1400 + 0.8 (Y-T), I = 1000-4000 r, G= 1450 T= 800 + 0.25 Y, NX= 400-0.1 Y-8 00 e Where e= foreign currency/ domestic currency, and initially set at e = 0.75 The money demand function is Md = 0.60 Y -84000 r, and Money supply is set by the Central Bank at 660. All calculation...
Consider the following macro model of an economy 8 < : Y = C + I...
Consider the following macro model of an economy 8 < : Y = C + I + G0 C = 12 + 0:6Y I = 5 + 0:2Y (i) Solve for the equilibrium GDP by any method you like. (ii) Specify the government spending multiplier.
Consider the following national income model: ? − ? − ?< − ?< = 0 ?...
Consider the following national income model: ? − ? − ?< − ?< = 0 ? − ? − ?(? − ?) = 0 ? − ? − ?? = 0 where Y= income, C=consumption, I= investment, G= government spending, T= taxes ?, ?, ?, and ? are parameters: ? is positive because consumption is positive even if disposable income (? − ?) is zero; ? is a positive fraction because it represents the marginal propensity to consume; ? is...
. Consider the following model: C = 500 + .3(Y − T) I = 150 +...
. Consider the following model: C = 500 + .3(Y − T) I = 150 + .1Y − 1000i G = 350 T = 250 (M/P) d = 2Y − 8000i M/P = 1600 (a) Derive the IS relation (b) Derive the LM relation (c) Solve for equilibrium real output. (d) Solve for the equilibrium interest rate. i = .131 (e) Solve for the equilibrium values of C and I and verify the value you obtained for Y by adding...
1. Consider the following model of the economy: C = 170+.6(Y-T) I = 250 G =...
1. Consider the following model of the economy: C = 170+.6(Y-T) I = 250 G = 300 T = 200a. What is the value of the marginal propensity to consume?b. What is the value of the government budget deficit?c. Calculate the equilibrium level of GDP and show you work on a Keynesian-Cross diagram.d. What is the value of the government-purchases multiplier? Show all your work and explain fully.e. Use your answer to part d to calculate the amount by which...
Consider a competitive industry where all firms have identical cost functions C(y) = y^2 +1 if...
Consider a competitive industry where all firms have identical cost functions C(y) = y^2 +1 if y > 0 and C(0) = 0. Suppose that the demand curve for this industry is given by D(p) = 52 − p. (a) Find the individual supply curve of each firm. (b) Suppose there are n firms in the industry. Find the industry supply curve. (c) Find the price and quantity corresponding to a short-run market equilibrium assuming there are n firms in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT