In: Economics
. Consider the following model:
C = 500 + .3(Y − T) I = 150 + .1Y − 1000i G = 350 T = 250 (M/P) d = 2Y − 8000i M/P = 1600
(a) Derive the IS relation
(b) Derive the LM relation
(c) Solve for equilibrium real output.
(d) Solve for the equilibrium interest rate. i = .131
(e) Solve for the equilibrium values of C and I and verify the value you obtained for Y by adding C, I, and G
C = 500 + .3(Y − T)
I = 150 + .1Y − 1000i
G = 350
T = 250
(M/P) d = 2Y − 8000i
M/P = 1600
a) IS relation:
Y= C+I+G
Y= 500 + .3(Y − T)+150 + .1Y − 1000i+350
Y= 1000+ 0.3Y-0.3(250)+0.1Y-1000i
Y-0.3Y-0.1Y = 925 - 1000i
i= (925-0.6Y)/1000 IS equation
b) LM relation:
Money demand = Money supply
2Y − 8000i = 1600
i = (2Y-1600)/8000 LM equation
c) For equilibrium:
IS = LM
(925-0.6Y)/1000 = (2Y-1600)/8000
(925-0.6Y)8= 2Y-1600
7400-4.8Y = 2Y-1600
9000= 6.8Y
Y= 1323.53 Equilibrium level of real output.
d) For equilibrium level of i:
Put value of Y= 1323.53 into LM
i = (2Y-1600)/8000= (2x1323.53-1600)/8000= 1047.06/8000 = 0.131
e)
C = 500 + .3(Y − T) = 500 + .3(1323.53 − 250) = 500+322.10= 822.10
I = 150 + .1Y − 1000i = 150+0.1(1323.53)-1000(0.131)= 151.43
G= 350
Y= 822.1+151.43+350= 1323.53