In: Economics
Principles of Macroeconomics
Assignment (2)
-------------------------------------------------------------------------------------------------------
Given the following equations (all numbers are in million $)
C = 100 + 0.60Yd
IP = 80
G = 70
T = 30 + 0.10Y
-------------------------------------------------------------------------------------------------------
A) C = 100 + 0.60Yd
C = 100 + 0.60(Y-T)
C = 100 + 0.60(Y-(30+ 0.1Y)
C = 100 + 0.60(Y- 30 - 0.1Y)
C = 100 + 0.60Y- 18 - 0.06Y
C = 82 + 0.54Y
So,
Y = C + IP + G
Y = 82 + 0.54Y+ 80 + 70
Y = 232 + 0.54Y
Y - 0.54Y = 232
0.46Y = 232
Y = 232 / 0.46 = $504.35 million
Thus, the equilibrium output is $504.35 million.
B) C = 82 + 0.54Y = 82 + 0.54(504.35) = $354.35 million
Yd = Y - T = Y - 30 - 0.10Y = 504.35 - 30 - 0.10(504.35) = $423.92
Savings (S) = Yd - C = $423.92 - $354.35 = $69.57
Thus, the consumption is $354.35 million and saving $69.57.
C) T = 30 + 0.10Y = 30 + 0.10(504.35) = $80.43
S + T = I + G
69.57 + 80.43 = 80 + 70
150 = 150 [proved]
D) The government’s budget surplus = 80.43 - 70 = $10.43 million.
E) If, IP decreases to 50
G increases by 30
T increases by 10
T = 30 + 0.1Y + 10 = 40 + 0.1Y
C = 100 + 0.60Yd
C = 100 + 0.60(Y-T)
C = 100 + 0.60(Y-(40+ 0.1Y)
C = 100 + 0.60(Y- 40 - 0.1Y)
C = 100 + 0.60Y- 24 - 0.06Y
C = 76 + 0.54Y
G = 70 + 30 = 100
So,
Y = C + IP + G
Y = 76 + 0.54Y+ 50 + 100
Y = 226 + 0.54Y
Y - 0.54Y = 226
0.46Y = 226
Y = 226 / 0.46 = $491.30 million
Thus, the equilibrium output is $491.30 million.