In: Finance
Better Mousetraps has developed a new trap. It can go into production for an initial investment in equipment of $6.3 million. The equipment will be depreciated straight line over 6 years to a value of zero, but in fact it can be sold after 6 years for $536,000. The firm believes that working capital at each date must be maintained at a level of 10% of next year’s forecast sales. The firm estimates production costs equal to $1.10 per trap and believes that the traps can be sold for $5 each. Sales forecasts are given in the following table. The project will come to an end in 6 years, when the trap becomes technologically obsolete. The firm’s tax bracket is 35%, and the required rate of return on the project is 10%. Use the MACRS depreciation schedule.
| Year: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | Thereafter | 
| Sales (millions of traps) | 0 | 0.5 | 0.7 | 0.8 | 0.8 | 0.6 | 0.5 | 0 | 
a. What is project NPV? (Negative amount
should be indicated by a minus sign. Do not round intermediate
calculations. Enter your answer in millions rounded to 4 decimal
places.)
b. By how much would NPV increase if the firm
depreciated its investment using the 5-year MACRS schedule?
(Do not round intermediate calculations. Enter your answer
in whole dollars not in millions.)
| a] | [$ in millions] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 
| Sales [millions of traps] | 0.5000 | 0.7000 | 0.8000 | 0.8000 | 0.6000 | 0.5000 | ||
| Sales revenue | $ 2.5000 | $ 3.5000 | $ 4.0000 | $ 4.0000 | $ 3.0000 | $ 2.5000 | ||
| Production cost excluding depreciation | $ 0.5500 | $ 0.7700 | $ 0.8800 | $ 0.8800 | $ 0.6600 | $ 0.5500 | ||
| Depreciation = 6.3/6 = | $ 1.0500 | $ 1.0500 | $ 1.0500 | $ 1.0500 | $ 1.0500 | $ 1.0500 | ||
| NOI | $ 0.9000 | $ 1.6800 | $ 2.0700 | $ 2.0700 | $ 1.2900 | $ 0.9000 | ||
| Tax at 35% | $ 0.3150 | $ 0.5880 | $ 0.7245 | $ 0.7245 | $ 0.4515 | $ 0.3150 | ||
| NOPAT | $ 0.5850 | $ 1.0920 | $ 1.3455 | $ 1.3455 | $ 0.8385 | $ 0.5850 | ||
| Add: Depreciation | $ 1.0500 | $ 1.0500 | $ 1.0500 | $ 1.0500 | $ 1.0500 | $ 1.0500 | ||
| OCF | $ 1.6350 | $ 2.1420 | $ 2.3955 | $ 2.3955 | $ 1.8885 | $ 1.6350 | ||
| Capital spending | $ 6.3000 | |||||||
| Change in NWC | $ 0.2500 | $ 0.1000 | $ 0.0500 | $ - | $ -0.1000 | $ -0.0500 | -0.2500 | |
| After tax salvage value of the equipment = 0.536*(1-35%) = | 0.3484 | |||||||
| FCF | $ -6.5500 | $ 1.5350 | $ 2.0920 | $ 2.3955 | $ 2.4955 | $ 1.9385 | $ 2.2334 | |
| PVIF at 10% [PVIF = 1/1.1^t] | 1 | 0.90909 | 0.82645 | 0.75131 | 0.68301 | 0.62092 | 0.56447 | |
| PV at 10% | $ -6.5500 | $ 1.3955 | $ 1.7289 | $ 1.7998 | $ 1.7045 | $ 1.2037 | $ 1.2607 | |
| NPV (Sum of PVs t0 to t6] | $ 2.5430 | |||||||
| b) | Depreciation under SLM | $ 10,50,000 | $ 10,50,000 | $ 10,50,000 | $ 10,50,000 | $ 10,50,000 | $ 10,50,000 | |
| Depreciation under MACRS | $ 12,60,000 | $ 20,16,000 | $ 12,09,600 | $ 7,25,760 | $ 7,25,760 | $ 3,62,880 | ||
| Difference in depreciation [MACRS-SLM] | $ 2,10,000 | $ 9,66,000 | $ 1,59,600 | $ -3,24,240 | $ -3,24,240 | $ -6,87,120 | ||
| Tax shield on difference in depreciation at 35% | $ 73,500 | $ 3,38,100 | $ 55,860 | $ -1,13,484 | $ -1,13,484 | $ -2,40,492 | ||
| PVIF at 10% [PVIF = 1/1.1^t] | 1 | 0.90909 | 0.82645 | 0.75131 | 0.68301 | 0.62092 | 0.56447 | |
| PV of depreciation tax shield | $ 66,818 | $ 2,79,421 | $ 41,968 | $ -77,511 | $ -70,465 | $ -1,35,751 | ||
| Sum of PVs | $ 1,04,481 | |||||||
| The NPV will increase by $104,481, if MACRS method is used for depreciation. | ||||||||