In: Finance
1. You are considering a new product launch. The project will cost $680,000, have a four-year life, and have no salvage value; depreciation is straight-line to zero. Sales are projected at 160 units per year, price per unit will be $19,000, variable cost per unit will be $14,000, and fixed costs will be $150,000 per year. The required return on the project is 15%, and the relevant tax rate is 35%. (17 marks total)
a. Based on your experience, the unit sales, variable cost, and fixed cost projections given here are probably accurate to within ± 10%. What are the upper and lower bounds for these projections for unit sales, variable cost, and fixed cost?
b. What is the base-case NPV? (1 mark)
c. What are the NPVs in the best-case and worst-case scenarios?
d. Evaluate the sensitivity of your base-case NPV to changes in fixed costs. (2.5 marks)
e. What is this project’s cash break-even level of output (ignoring taxes)? (1 mark)
f. What is the accounting break-even level of output for this project, and what is the degree of operating leverage (DOL) at the accounting break-even point? How do you interpret this DOL number? (2.5 marks)
g. What is the financial break-even level of output for this project, and what is the degree of operating leverage (DOL) at the financial break-even point? How do you interpret this DOL number?
Part a:
Scenarios | Base Case | Worst Case | Best Case |
Unit sales | 160 | 144 | 176 |
VC per unit | 14000 | 15400 | 12600 |
VC | 2240000 | 2217600 | 2217600 |
Fixed Cost | 150000 | 165000 | 135000 |
Part B: Base case NPV is calculated below
Base case | ||||||
Year | Remark | 0 | 1 | 2 | 3 | 4 |
Unit sales | Given | 160 | 160 | 160 | 160 | |
SP | Given | 19000 | 19000 | 19000 | 19000 | |
VC per unit | Given | 14000 | 14000 | 14000 | 14000 | |
Sales | SP x Unit Sales | 3040000 | 3040000 | 3040000 | 3040000 | |
VC | VC per unit x Unit Sales | 2240000 | 2240000 | 2240000 | 2240000 | |
Fixed Cost | Given | 150000 | 150000 | 150000 | 150000 | |
EBITDA | Sales - CV -Fixed Cost | 650000 | 650000 | 650000 | 650000 | |
Depreciation | Calculated | 170000 | 170000 | 170000 | 170000 | |
EBT | EBITDA-Depreciation | 480000 | 480000 | 480000 | 480000 | |
Taxes | 0.35 x EBT | 168000 | 168000 | 168000 | 168000 | |
EAT | EBT-Taxes | 312000 | 312000 | 312000 | 312000 | |
Depreciation | Added back as Non Cash | 170000 | 170000 | 170000 | 170000 | |
OCF | EAT+Depreciation | 482000 | 482000 | 482000 | 482000 | |
FCINV | Given | -680000 | ||||
FCF | OCF+FCINV | -680000 | 482000 | 482000 | 482000 | 482000 |
Discount factor formula | 1/1.15^0 | 1/1.15^1 | 1/1.15^2 | 1/1.15^3 | 1/1.15^4 | |
Discount factor | 1 | 0.869565217 | 0.756143667 | 0.657516232 | 0.571753246 | |
DCF | Discount factor x xFCF | -680000 | 419130.4348 | 364461.2476 | 316922.824 | 275585.0644 |
NPV | Sum of all DCF | 696099.5708 |
Part C: NPVs in the best-case and worst-case scenarios are calculated below:
Worst case | ||||||
Year | Remark | 0 | 1 | 2 | 3 | 4 |
Unit sales | Given | 144 | 144 | 144 | 144 | |
SP | Given | 19000 | 19000 | 19000 | 19000 | |
VC per unit | Given | 15400 | 15400 | 15400 | 15400 | |
Sales | SP x Unit Sales | 2736000 | 2736000 | 2736000 | 2736000 | |
VC | VC per unit x Unit Sales | 2217600 | 2217600 | 2217600 | 2217600 | |
Fixed Cost | Given | 165000 | 165000 | 165000 | 165000 | |
EBITDA | Sales - CV -Fixed Cost | 353400 | 353400 | 353400 | 353400 | |
Depreciation | Calculated | 170000 | 170000 | 170000 | 170000 | |
EBT | EBITDA-Depreciation | 183400 | 183400 | 183400 | 183400 | |
Taxes | 0.35 x EBT | 64190 | 64190 | 64190 | 64190 | |
EAT | EBT-Taxes | 119210 | 119210 | 119210 | 119210 | |
Depreciation | Added back as Non Cash | 170000 | 170000 | 170000 | 170000 | |
OCF | EAT+Depreciation | 289210 | 289210 | 289210 | 289210 | |
FCINV | Given | -680000 | ||||
FCF | OCF+FCINV | -680000 | 289210 | 289210 | 289210 | 289210 |
Discount factor formula | 1/1.15^0 | 1/1.15^1 | 1/1.15^2 | 1/1.15^3 | 1/1.15^4 | |
Discount factor | 1 | 0.869565217 | 0.756143667 | 0.657516232 | 0.571753246 | |
DCF | Discount factor x xFCF | -680000 | 251486.9565 | 218684.31 | 190160.2696 | 165356.7562 |
NPV | Sum of all DCf | 145688.2923 |
Best case | ||||||
Year | Remark | 0 | 1 | 2 | 3 | 4 |
Unit sales | Given | 176 | 176 | 176 | 176 | |
SP | Given | 19000 | 19000 | 19000 | 19000 | |
VC per unit | Given | 12600 | 12600 | 12600 | 12600 | |
Sales | SP x Unit Sales | 3344000 | 3344000 | 3344000 | 3344000 | |
VC | VC per unit x Unit Sales | 2217600 | 2217600 | 2217600 | 2217600 | |
Fixed Cost | Given | 135000 | 135000 | 135000 | 135000 | |
EBITDA | Sales - CV -Fixed Cost | 991400 | 991400 | 991400 | 991400 | |
Depreciation | Calculated | 170000 | 170000 | 170000 | 170000 | |
EBT | EBITDA-Depreciation | 821400 | 821400 | 821400 | 821400 | |
Taxes | 0.35 x EBT | 287490 | 287490 | 287490 | 287490 | |
EAT | EBT-Taxes | 533910 | 533910 | 533910 | 533910 | |
Depreciation | Added back as Non Cash | 170000 | 170000 | 170000 | 170000 | |
OCF | EAT+Depreciation | 703910 | 703910 | 703910 | 703910 | |
FCINV | Given | -680000 | ||||
FCF | OCF+FCINV | -680000 | 703910 | 703910 | 703910 | 703910 |
Discount factor formula | 1/1.15^0 | 1/1.15^1 | 1/1.15^2 | 1/1.15^3 | 1/1.15^4 | |
Discount factor | 1 | 0.869565217 | 0.756143667 | 0.657516232 | 0.571753246 | |
DCF | Discount factor x xFCF | -680000 | 612095.6522 | 532257.0888 | 462832.2512 | 402462.8271 |
NPV | Sum of all DCf | 1329647.819 |
Part d: To evaluate the sensitivity of base case NPV to fixed cost, we increase the fixed cost by 1% and decrease it by 1%, then we calculate the NPV under each case keeping all other values constant. We get the following table
Fixed Cost | 150000 | 150000 x 0.99 = 148500 | 150000 x 1.01= 151500 |
NPV | 696099.57 | 698883.175 | 693315.97 |
Sensitivity | 698883.175/696099.57 - 1 = 0.40% | 693315.97/696099.57 - 1 = -0.40% |
So with every 1% change in the fixed cost, the NPV changes by 0.40% in the inverse direction
Part e:
Part f:
DOL implies how much of the company's operating income will change if sales changes, so if sales changes by $1.88 the operating income will change by $1
Part g: Financial BEP is when the NPV = 0
As number of units cant be fractional, the financial BEP units = 85
Best case | ||||||
Year | Remark | 0 | 1 | 2 | 3 | 4 |
Unit sales | Given | 84.97859664 | 84.97859664 | 84.97859664 | 84.97859664 | |
SP | Given | 19000 | 19000 | 19000 | 19000 | |
VC per unit | Given | 14000 | 14000 | 14000 | 14000 | |
Sales | SP x Unit Sales | 1614593.336 | 1614593.336 | 1614593.336 | 1614593.336 | |
VC | VC per unit x Unit Sales | 1189700.353 | 1189700.353 | 1189700.353 | 1189700.353 | |
Fixed Cost | Given | 150000 | 150000 | 150000 | 150000 | |
EBITDA | Sales - CV -Fixed Cost | 274892.9832 | 274892.9832 | 274892.9832 | 274892.9832 | |
Depreciation | Calculated | 170000 | 170000 | 170000 | 170000 | |
EBT | EBITDA-Depreciation | 104892.9832 | 104892.9832 | 104892.9832 | 104892.9832 | |
Taxes | 0.35 x EBT | 36712.54412 | 36712.54412 | 36712.54412 | 36712.54412 | |
EAT | EBT-Taxes | 68180.43908 | 68180.43908 | 68180.43908 | 68180.43908 | |
Depreciation | Added back as Non Cash | 170000 | 170000 | 170000 | 170000 | |
OCF | EAT+Depreciation | 238180.4391 | 238180.4391 | 238180.4391 | 238180.4391 | |
FCINV | Given | -680000 | ||||
FCF | OCF+FCINV | -680000 | 238180.4391 | 238180.4391 | 238180.4391 | 238180.4391 |
Discount factor formula | 1/1.15^0 | 1/1.15^1 | 1/1.15^2 | 1/1.15^3 | 1/1.15^4 | |
Discount factor | 1 | 0.869565217 | 0.756143667 | 0.657516232 | 0.571753246 | |
DCF | Discount factor x xFCF | -680000 | 207113.4253 | 180098.6307 | 156607.5049 | 136180.4391 |
NPV | Sum of all DCf | 0 |
DOL implies how much of the company's operating income will change if sales changes, so if sales changes by $1.54 the operating income will change by $1