Question

In: Statistics and Probability

For a standard normal distribution, determine the probabilities in parts a through d below. a. Find...

For a standard normal distribution, determine the probabilities in parts a through d below.
a. Find P(z ). ?1.59
P(z ) ?1.59 = (Round to four decimal places as needed.)
b. Find P(z ). ? ?1.21
P(z ) ? ?1.21 = (Round to four decimal places as needed.)
c. Find P( z ). ?0.83? ?1.78
P( z ) ?0.83? ?1.78 = (Round to four decimal places as needed.)
d. Find P( z ). 0.33? ?2.19
P( z ) 0.33? ?2.19 = (Round to four decimal places as needed.)

    Second digit of z                                  
First digit of z   0   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09
-3   0.0013   0.0013   0.0013   0.0012   0.0012   0.0011   0.0011   0.0011   0.001   0.001
-2.9   0.0019   0.0018   0.0018   0.0017   0.0016   0.0016   0.0015   0.0015   0.0014   0.0014
-2.8   0.0026   0.0025   0.0024   0.0023   0.0023   0.0022   0.0021   0.0021   0.002   0.0019
-2.7   0.0035   0.0034   0.0033   0.0032   0.0031   0.003   0.0029   0.0028   0.0027   0.0026
-2.6   0.0047   0.0045   0.0044   0.0043   0.0041   0.004   0.0039   0.0038   0.0037   0.0036
-2.5   0.0062   0.006   0.0059   0.0057   0.0055   0.0054   0.0052   0.0051   0.0049   0.0048
-2.4   0.0082   0.008   0.0078   0.0075   0.0073   0.0071   0.0069   0.0068   0.0066   0.0064
-2.3   0.0107   0.0104   0.0102   0.0099   0.0096   0.0094   0.0091   0.0089   0.0087   0.0084
-2.2   0.0139   0.0136   0.0132   0.0129   0.0125   0.0122   0.0119   0.0116   0.0113   0.011
-2.1   0.0179   0.0174   0.017   0.0166   0.0162   0.0158   0.0154   0.015   0.0146   0.0143
-2   0.0228   0.0222   0.0217   0.0212   0.0207   0.0202   0.0197   0.0192   0.0188   0.0183
-1.9   0.0287   0.0281   0.0274   0.0268   0.0262   0.0256   0.025   0.0244   0.0239   0.0233
-1.8   0.0359   0.0351   0.0344   0.0336   0.0329   0.0322   0.0314   0.0307   0.0301   0.0294
-1.7   0.0446   0.0436   0.0427   0.0418   0.0409   0.0401   0.0392   0.0384   0.0375   0.0367
-1.6   0.0548   0.0537   0.0526   0.0516   0.0505   0.0495   0.0485   0.0475   0.0465   0.0455
-1.5   0.0668   0.0655   0.0643   0.063   0.0618   0.0606   0.0594   0.0582   0.0571   0.0559
-1.4   0.0808   0.0793   0.0778   0.0764   0.0749   0.0735   0.0721   0.0708   0.0694   0.0681
-1.3   0.0968   0.0951   0.0934   0.0918   0.0901   0.0885   0.0869   0.0853   0.0838   0.0823
-1.2   0.1151   0.1131   0.1112   0.1093   0.1075   0.1056   0.1038   0.102   0.1003   0.0985
-1.1   0.1357   0.1335   0.1314   0.1292   0.1271   0.1251   0.123   0.121   0.119   0.117
-1   0.1587   0.1562   0.1539   0.1515   0.1492   0.1469   0.1446   0.1423   0.1401   0.1379
-0.9   0.1841   0.1814   0.1788   0.1762   0.1736   0.1711   0.1685   0.166   0.1635   0.1611
-0.8   0.2119   0.209   0.2061   0.2033   0.2005   0.1977   0.1949   0.1922   0.1894   0.1867
-0.7   0.242   0.2389   0.2358   0.2327   0.2296   0.2266   0.2236   0.2206   0.2177   0.2148
-0.6   0.2743   0.2709   0.2676   0.2643   0.2611   0.2578   0.2546   0.2514   0.2483   0.2451
-0.5   0.3085   0.305   0.3015   0.2981   0.2946   0.2912   0.2877   0.2843   0.281   0.2776
-0.4   0.3446   0.3409   0.3372   0.3336   0.33   0.3264   0.3228   0.3192   0.3156   0.3121
-0.3   0.3821   0.3783   0.3745   0.3707   0.3669   0.3632   0.3594   0.3557   0.352   0.3483
-0.2   0.4207   0.4168   0.4129   0.409   0.4052   0.4013   0.3974   0.3936   0.3897   0.3859
-0.1   0.4602   0.4562   0.4522   0.4483   0.4443   0.4404   0.4364   0.4325   0.4286   0.4247
0   0.5   0.496   0.492   0.488   0.484   0.4801   0.4761   0.4721   0.4681   0.4641

Table 2

    Second digit of z                                  
First digit of z   0   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09
0   0.5   0.504   0.508   0.512   0.516   0.5199   0.5239   0.5279   0.5319   0.5359
0.1   0.5398   0.5438   0.5478   0.5517   0.5557   0.5596   0.5636   0.5675   0.5714   0.5753
0.2   0.5793   0.5832   0.5871   0.591   0.5948   0.5987   0.6026   0.6064   0.6103   0.6141
0.3   0.6179   0.6217   0.6255   0.6293   0.6331   0.6368   0.6406   0.6443   0.648   0.6517
0.4   0.6554   0.6591   0.6628   0.6664   0.67   0.6736   0.6772   0.6808   0.6844   0.6879
0.5   0.6915   0.695   0.6985   0.7019   0.7054   0.7088   0.7123   0.7157   0.719   0.7224
0.6   0.7257   0.7291   0.7324   0.7357   0.7389   0.7422   0.7454   0.7486   0.7517   0.7549
0.7   0.758   0.7611   0.7642   0.7673   0.7704   0.7734   0.7764   0.7794   0.7823   0.7852
0.8   0.7881   0.791   0.7939   0.7967   0.7995   0.8023   0.8051   0.8078   0.8106   0.8133
0.9   0.8159   0.8186   0.8212   0.8238   0.8264   0.8289   0.8315   0.834   0.8365   0.8389
1   0.8413   0.8438   0.8461   0.8485   0.8508   0.8531   0.8554   0.8577   0.8599   0.8621
1.1   0.8643   0.8665   0.8686   0.8708   0.8729   0.8749   0.877   0.879   0.881   0.883
1.2   0.8849   0.8869   0.8888   0.8907   0.8925   0.8944   0.8962   0.898   0.8997   0.9015
1.3   0.9032   0.9049   0.9066   0.9082   0.9099   0.9115   0.9131   0.9147   0.9162   0.9177
1.4   0.9192   0.9207   0.9222   0.9236   0.9251   0.9265   0.9279   0.9292   0.9306   0.9319
1.5   0.9332   0.9345   0.9357   0.937   0.9382   0.9394   0.9406   0.9418   0.9429   0.9441
1.6   0.9452   0.9463   0.9474   0.9484   0.9495   0.9505   0.9515   0.9525   0.9535   0.9545
1.7   0.9554   0.9564   0.9573   0.9582   0.9591   0.9599   0.9608   0.9616   0.9625   0.9633
1.8   0.9641   0.9649   0.9656   0.9664   0.9671   0.9678   0.9686   0.9693   0.9699   0.9706
1.9   0.9713   0.9719   0.9726   0.9732   0.9738   0.9744   0.975   0.9756   0.9761   0.9767
2   0.9772   0.9778   0.9783   0.9788   0.9793   0.9798   0.9803   0.9808   0.9812   0.9817
2.1   0.9821   0.9826   0.983   0.9834   0.9838   0.9842   0.9846   0.985   0.9854   0.9857
2.2   0.9861   0.9864   0.9868   0.9871   0.9875   0.9878   0.9881   0.9884   0.9887   0.989
2.3   0.9893   0.9896   0.9898   0.9901   0.9904   0.9906   0.9909   0.9911   0.9913   0.9916
2.4   0.9918   0.992   0.9922   0.9925   0.9927   0.9929   0.9931   0.9932   0.9934   0.9936
2.5   0.9938   0.994   0.9941   0.9943   0.9945   0.9946   0.9948   0.9949   0.9951   0.9952
2.6   0.9953   0.9955   0.9956   0.9957   0.9959   0.996   0.9961   0.9962   0.9963   0.9964
2.7   0.9965   0.9966   0.9967   0.9968   0.9969   0.997   0.9971   0.9972   0.9973   0.9974
2.8   0.9974   0.9975   0.9976   0.9977   0.9977   0.9978   0.9979   0.9979   0.998   0.9981
2.9   0.9981   0.9982   0.9982   0.9983   0.9984   0.9984   0.9985   0.9985   0.9986   0.9986
3   0.9987   0.9987   0.9987   0.9988   0.9988   0.9989   0.9989   0.9989   0.999   0.999

Solutions

Expert Solution

Solution :
Using standard normla table,
a ) P(Z < 1.59)  
To see the z value 0.1 in the column and 0.59 in the row of the standard normal table the corresponding probability is
Probability = 0.9441

b ) P(Z < -1.21)  
To see the z value - 0.1 in the column and 0.21 in the row of the standard normal table the corresponding probability is
Probability = 0.1131

c) P( ?0.83 z   1.78 )

P (z 1.78 ) - P ( z - 0.83 )

using z table

= 0.9625 - 0.2033

= 0.7592

Probability = 0.7592

d) P( 0.33 z   2.19 )

P (z 2.19 ) - P ( z - 0.33 )

using z table

= 0.9857 - 0.6293

= 0.3564

Probability = 0.3564


Related Solutions

For a standard normal​ distribution, determine the probabilities in parts a through d below. Click here...
For a standard normal​ distribution, determine the probabilities in parts a through d below. Click here to view page 1 of the standard normal probability table. LOADING... Click here to view page 2 of the standard normal probability table. LOADING... a. Find ​P(zless than or equals≤1.561.56​). ​P(zless than or equals≤1.561.56​)equals=nothing ​(Round to four decimal places as​ needed.) b. Find ​P(zless than or equals≤negative 1.28−1.28​). ​P(zless than or equals≤negative 1.28−1.28​)equals=nothing ​(Round to four decimal places as​ needed.) c. Find ​P(negative 0.84−0.84less...
Use the probability distribution to find probabilities in parts​ (a) through​ (c). The probability distribution of...
Use the probability distribution to find probabilities in parts​ (a) through​ (c). The probability distribution of number of dogs per household in a small town Dogs 0 1 2 3 4 5 Households 0.6730.673 0.2010.201 0.0760.076 0.0250.025 0.0170.017 0.0080.008 ​(a) Find the probability of randomly selecting a household that has fewer than two dogs. 0.8740.874   ​(Round to three decimal places as​ needed.) ​(b) Find the probability of randomly selecting a household that has at least one dog. 0.3270.327 ​ (Round...
Determine the total area under the standard normal curve in parts ​(a) through ​(c) below. ​(a)...
Determine the total area under the standard normal curve in parts ​(a) through ​(c) below. ​(a) Find the area under the normal curve to the left of z=−2 plus the area under the normal curve to the right of z=2. The combined area is ____ ​(Round to four decimal places as​ needed.) ​(b) Find the area under the normal curve to the left of z=−1.54 plus the area under the normal curve to the right of z=2.54.The combined area is_____...
for a standardized normal distribution, calculate the probabilities below. (standard normal disturbution table of the area...
for a standardized normal distribution, calculate the probabilities below. (standard normal disturbution table of the area need to be used) a) P(0.00 < z <_ 2.36) b) P(-1.50 < z <_ 1.50 ) c) P( 1.68 < z < 2.27 )
Given a normal distribution with 100 and 5-10, complete parts (a) through (d)
Given a normal distribution with 100 and 5-10, complete parts (a) through (d).  a. What is the probability that X > 95?    The probability that X> 95 is _______  b. What is the probability that X< 85?    The probability that X < 85 is _______  c. What is the probability that X < 75 or X> 115?   The probability that X < 75 or X> 115 is _______  d. 90% of the values are between what two X-values (symmetrically distributed around the mean)?   90%...
Find each of the probabilities where z is a z-score from a standard normal distribution with...
Find each of the probabilities where z is a z-score from a standard normal distribution with a mean of μ=0 and standard deviation σ=1. Make sure you draw a picture of each problem.   Show all steps with TI 83 P(z < 2.15) P(z > 0.71) P(-1.45 <z < 2.17)
Find the probabilities associated with the standard normal distribution (Draw the area being found in each...
Find the probabilities associated with the standard normal distribution (Draw the area being found in each part) a. Pz≥.23=                                    b. Pz≤-2.36=                               c. P-3.25≤z≤1=
Given a normal distribution with μ = 100 and σ=10, complete parts​ (a) through​ (d). a....
Given a normal distribution with μ = 100 and σ=10, complete parts​ (a) through​ (d). a. What is the probability that X > 95? The probability that X > 95 is ___. ​(Round to four decimal places as​ needed.) b. What is the probability that X < 75​? The probability that X < 75 is ___. ​(Round to four decimal places as​ needed.) c. What is the probability that X < 85 or X > 110​? The probability that X...
15. How is the standard normal distribution used to compute normal probabilities?
15. How is the standard normal distribution used to compute normal probabilities?
Given a normal distribution with μ=55 and σ=4​, complete parts​ (a) through​ (d). a) What is...
Given a normal distribution with μ=55 and σ=4​, complete parts​ (a) through​ (d). a) What is the probability that X>48​? ​(Round to four decimal places as​ needed.) b) What is the probability that X<47​? ​(Round to four decimal places as​ needed.) c) For this distribution, 6% of the values are less than what X-Value? ​(Round to four decimal places as​ needed.) d) Between what two X-values (symmetrically distributed around the​ mean) are 60% of the values? ​(Round to four decimal...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT