In: Advanced Math
The cost in dollars of operating a jet-powered commercial
airplane Co is given by the following equation
Co = k*n*v^(3/2)
where
n is the trip length in miles,
v is the velocity in miles per hour, and
k is a constant of proportionality.
It is known that at 590 miles per hour the cost of operation is
$300 per mile. The cost of passengers' time in dollars equals
$226,000 times the number of hours of travel. The airline company
wants to minimize the total cost of a trip which is equal to the
cost of operating plus the cost of passengers' time.
At what velocity should the trip be planned to minimize the total
cost?
HINT: If you are finding this difficult to solve, arbitrarily
choose a number of miles for the trip length, but as you solve it,
you should be able to see that the optimal velocity does not depend
on the value of n