Question

In: Physics

A nuclear medicine source made of 32P with half-life of 14.3 days emits beta particles at...

  1. A nuclear medicine source made of 32P with half-life of 14.3 days emits beta particles at 0.70 MeV. Ten grams of 32P concentrate in a tiny tumor in the bladder after injection. The activity is initially 1.0 x 1010 Bq. Compute the dose (in units of Gy) delivered at the tumor two half-lives after injection. For a more accurate answer, you should integrate the dose rate over time as the source strength changes due to radioactive decay.

Solutions

Expert Solution


Related Solutions

32P is a radioactive isotope with a half-life of 14.3 days. If you currently have 30.9...
32P is a radioactive isotope with a half-life of 14.3 days. If you currently have 30.9 g of 32P, how much 32P was present 9.00 days ago?
Bismuth-210 is beta emitter with a half-life of 5.0 days. Part A If a sample contains...
Bismuth-210 is beta emitter with a half-life of 5.0 days. Part A If a sample contains 1.2 g of Bi−210 (atomic mass = 209.984105 amu), how many beta emissions would occur in 14.0 days? Part B If a person's body intercepts 5.8% of those emissions, to what dose of radiation (in Ci) is the person exposed?
The shelf life, in days, for bottles of a certain prescribed medicine is a random variable...
The shelf life, in days, for bottles of a certain prescribed medicine is a random variable having triangular pdf in the interval (0, 30) months with the mode at 12 months. Compute the probability that a bottle of this medicine will have a shelf life of at least 200 days; anywhere from 180 to 550 days. Find the median of the shelf life Compute the probability that a bottle of this medicine that is still effective at 450 days will...
Neutron Decay 4 On their own, neutrons are unstable particles with a half-life of 618 s...
Neutron Decay 4 On their own, neutrons are unstable particles with a half-life of 618 s when at rest. They decay into a proton, an electron and an electron antineutrino. Half-life is the time that it takes half of a collection of unstable particles to decay. a- The highest energy neutrons produced in a nuclear reactor are traveling at about %15 of the speed of light, About how many seconds is longer in this half - life for these neutrons?...
The half-life of cesium-137, released as a result of the Fukushima Daiichi nuclear disaster, is 30.2...
The half-life of cesium-137, released as a result of the Fukushima Daiichi nuclear disaster, is 30.2 years. Determine the number of years it would take for the amount of cesium-137 to decrease to 7 % of the original amount released in the disaster. Round your answer to the nearest number of years.
The half-life of 235U, an alpha emitter, is 7.1×108 yr. Calculate the number of alpha particles...
The half-life of 235U, an alpha emitter, is 7.1×108 yr. Calculate the number of alpha particles emitted by 8.2 mg of this nuclide in 8.0 minute.
Radioactive Half Life of Barium-137m: Are the detected activity and actual activity of the source Identical?...
Radioactive Half Life of Barium-137m: Are the detected activity and actual activity of the source Identical? What difference would this make in the analysis of the data?
Suppose a patient is given 140 mg of I−131, a beta emitter with a half-life of...
Suppose a patient is given 140 mg of I−131, a beta emitter with a half-life of 8.0 days.Assuming that none of the I−131 is eliminated from the person's body in the first 4.0 hours of treatment, what is the exposure (in Ci) during those first four hours? (please I need the correct answer with steps *no predictions )
The half-life of 235U, an alpha emitter, is 7.1×108 yr,Calculate the number of alpha particles emitted...
The half-life of 235U, an alpha emitter, is 7.1×108 yr,Calculate the number of alpha particles emitted by 4.1 mg of this nuclide in 2 minutes
​3816S decays by beta emission to 3817​Cl. This reaction has a half‐life of 2.87 hours. The...
​3816S decays by beta emission to 3817​Cl. This reaction has a half‐life of 2.87 hours. The 3817​Cl subsequently decays by beta emission to 3818​Ar. This reaction has a half‐life of 37.3 min. a) How much will remain of an initially pure sample of 3.5 mg 3816S after 9.35 hours? b) How many mg of 3817​Cl will be present after 9.35 hours? c) How many mg of 3818​Ar will be present after 9.35 hours?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT