In: Chemistry
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals into new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory. Hybrid orbitals are very useful in the explanation of molecular geometry and atomic bonding properties. Although sometimes taught together with the valence shell electron-pair repulsion (VSEPR) theory, valence bond and hybridisation are in fact not related to the VSEPR model.
Hybrid orbitals are assumed to be mixtures of atomic orbitals, superimposed on each other in various proportions. For example, in methane, the C hybrid orbital which forms each carbon–hydrogen bond consists of 25% s character and 75% p character and is thus described as sp3 (read as s-p-three) hybridised. Quantum mechanics describes this hybrid as an sp3 wavefunction of the form N(s + √3pσ), where N is a normalisation constant (here 1/2) and pσ is a p orbital directed along the C-H axis to form a sigma bond. The ratio of coefficients (denoted λ in general) is √3 in this example. Since the electron density associated with an orbital is proportional to the square of the wavefunction, the ratio of p-character to s-character is λ2 = 3. The p character or the weight of the p component is N2λ2 = 3/4. The amount of p character or s character, which is decided mainly by orbital hybridisation, can be used to reliably predict molecular properties such as acidity or basicity.
Types of hybridisation
Major 3 types are SP3, SP2 and SP.
sp3
Four sp3 orbitals.
Hybridisation describes the bonding atoms from an atom's point of view. For a tetrahedrally coordinated carbon (e.g., methane CH4), the carbon should have 4 orbitals with the correct symmetry to bond to the 4 hydrogen atoms.
Carbon's ground state configuration is 1s2 2s2 2p2 or more easily read:
C | ↑↓ | ↑↓ | ↑ | ↑ | |
1s | 2s | 2p | 2p | 2p |
The energy released by formation of two additional bonds more than compensates for the excitation energy required, energetically favouring the formation of four C-H bonds.
Quantum mechanically, the lowest energy is obtained if the four bonds are equivalent, which requires that they are formed from equivalent orbitals on the carbon. A set of four equivalent orbitals can be obtained that are linear combinations of the valence-shell (core orbitals are almost never involved in bonding) s and p wave functions, which are the four sp3 hybrids.
C* | ↑↓ | ↑ | ↑ | ↑ | ↑ |
1s | sp3 | sp3 | sp3 | sp3 |
sp2
Other carbon based compounds and other molecules may be explained in a similar way. For example, ethene (C2H4) has a double bond between the carbons.For this molecule, carbon sp2 hybridises, because one π (pi) bond is required for the double bond between the carbons and only three σ bonds are formed per carbon atom. In sp2 hybridisation the 2s orbital is mixed with only two of the three available 2p orbitals,
sp
The chemical bonding in compounds such as alkynes with triple bonds
is explained by sp hybridisation. In this model, the 2s orbital is
mixed with only one of the three p orbitals,resulting in two sp
orbitals and two remaining p orbitals. The chemical bonding in
acetylene (ethyne) (C2H2) consists of sp–sp
overlap between the two carbon atoms forming a σ bond and two
additional π bondsformed by p–p overlap. Each carbon also bonds to
hydrogen in a σ s–sp overlap at 180° angles.