Question

In: Advanced Math

Find u(x,y) harmonic in S with given boundary values: S = {(x,y): 1 < y <...

Find u(x,y) harmonic in S with given boundary values:

  1. S = {(x,y): 1 < y < 3} , u(x,y) = 5 (if y=1) and = 7 (when y=3)
  2. S = {(x,y): 1 < x2 + y2 < 4}, u(x,y)= 5 (on outer circle) and = 7 (on inner circle)

I have these two problems to solve, and I'm not sure where to start. Any help would be appreciated. Thanks!

Solutions

Expert Solution


Related Solutions

Let u(x, y) be the harmonic function in the unit disk with the boundary values u(x,...
Let u(x, y) be the harmonic function in the unit disk with the boundary values u(x, y) = x^2 on {x^2 + y^2 = 1}. Find its Rayleigh–Ritz approximation of the form x^2 +C1*(1−x^2 −y^2).
For the following u(x, y), show that it is harmonic and then find a corresponding v(x,...
For the following u(x, y), show that it is harmonic and then find a corresponding v(x, y) such that f(z)=u+iv is analytic. u(x, y)=(x^2-y^2) cos(y)e^x-2xysin(y)ex
Find u(x,y) harmonic in the region in the first quadrant bounded by y = 0 and...
Find u(x,y) harmonic in the region in the first quadrant bounded by y = 0 and y = √3 x such that u(x, 0) = 13 for all x and u(x,y) = 7 if y = √3 x . Express your answer in a form appropriate for a real variable problem.
If the function u (x, y) is a harmonic conjugate of v (x, y) prove that...
If the function u (x, y) is a harmonic conjugate of v (x, y) prove that the curves u (x, y) = st. and v (x, y) = stations. are orthogonal to each other. These curves are called level curves. Now consider the function f (z) = 1 / z defined throughout the complex plane except the beginning of the axes. Draw them level curves for the real and imaginary part of this function and notice that they are two...
Calculate the Y values corresponding to the X values given below.  Find the critical values for X...
Calculate the Y values corresponding to the X values given below.  Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of  dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed.  Using the first and second derivative...
A consumes two goods, x and y. A ’s utility function is given by u(x, y)...
A consumes two goods, x and y. A ’s utility function is given by u(x, y) = x 1/2y 1/2 The price of x is p and the price of y is 1. A has an income of M. (a) Derive A ’s demand functions for x and y. (b) Suppose M = 72 and p falls from 9 to 4. Calculate the income and substitution effects of the price change. (c) Calculate the compensating variation of the price change....
Plot the contours of u(x,y)=xy and its harmonic conjugate v(x,y).
Plot the contours of u(x,y)=xy and its harmonic conjugate v(x,y).
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d¬2y/dx2 = 0. Be sure to indicate the sign (+ or -) of dy/dx and of d2y/dx2 tabled values. Using the first and second derivative tests with the information you have calculated, determine which X value(s) represent...
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed. Using the...
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0. Be sure to indicate the sign (+ or -) of dy/dx and of d2y/dx2 tabled values. Reference Power Point Lesson 13 as needed. Using the first and second derivative tests with the information you...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT