Question

In: Advanced Math

Let u(x, y) be the harmonic function in the unit disk with the boundary values u(x,...

Let u(x, y) be the harmonic function in the unit disk with the boundary values u(x, y) = x^2 on {x^2 + y^2 = 1}. Find its Rayleigh–Ritz approximation of the form x^2 +C1*(1−x^2 −y^2).

Solutions

Expert Solution


Related Solutions

Find u(x,y) harmonic in S with given boundary values: S = {(x,y): 1 < y <...
Find u(x,y) harmonic in S with given boundary values: S = {(x,y): 1 < y < 3} , u(x,y) = 5 (if y=1) and = 7 (when y=3) S = {(x,y): 1 < x2 + y2 < 4}, u(x,y)= 5 (on outer circle) and = 7 (on inner circle) I have these two problems to solve, and I'm not sure where to start. Any help would be appreciated. Thanks!
If the function u (x, y) is a harmonic conjugate of v (x, y) prove that...
If the function u (x, y) is a harmonic conjugate of v (x, y) prove that the curves u (x, y) = st. and v (x, y) = stations. are orthogonal to each other. These curves are called level curves. Now consider the function f (z) = 1 / z defined throughout the complex plane except the beginning of the axes. Draw them level curves for the real and imaginary part of this function and notice that they are two...
Boundary-Value Problems in Other Coordinate Systems Solve ∆u = 0 in a disk x^2 + y^2...
Boundary-Value Problems in Other Coordinate Systems Solve ∆u = 0 in a disk x^2 + y^2 ≤ 25, where u(5, θ) = 7 sin 3θ − 6 sin 8θ and u is bounded when   r = 0. Solve ∆u = 0 in an annulus 1 ≤ x^2+y^2 ≤ 4, where u(1, θ) = 75 sin θ, u(2, θ) = 60 cos θ. Find the steady-state temperature distribution in a disk of radius 1 if the upper half of the circumference...
Plot the contours of u(x,y)=xy and its harmonic conjugate v(x,y).
Plot the contours of u(x,y)=xy and its harmonic conjugate v(x,y).
For the following u(x, y), show that it is harmonic and then find a corresponding v(x,...
For the following u(x, y), show that it is harmonic and then find a corresponding v(x, y) such that f(z)=u+iv is analytic. u(x, y)=(x^2-y^2) cos(y)e^x-2xysin(y)ex
Find u(x,y) harmonic in the region in the first quadrant bounded by y = 0 and...
Find u(x,y) harmonic in the region in the first quadrant bounded by y = 0 and y = √3 x such that u(x, 0) = 13 for all x and u(x,y) = 7 if y = √3 x . Express your answer in a form appropriate for a real variable problem.
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy + 2,000. Tammy’s utility function is U(x, y) = xy(1 - xy). Oral’s utility function is -1/(10 + xy. Billy’s utility function is U(x, y) = x/y. Pat’s utility function is U(x, y) = -xy. a. No two of these people have the same preferences. b. They all have the same preferences except for Billy. c. Jim, Jerry, and Pat all have the same...
Let assume that a consumer has a utility function u(x, y) = xy, and px =...
Let assume that a consumer has a utility function u(x, y) = xy, and px = 1 dollar, py = 2 dollars and budget=50. Derive the followings. (3 points each) 1) Marshallian demands of x and y 2) Hicksian demands of x and y 3) Indirect utility function 4) Expenditure function 5) Engel curve
Given a function φ(z) with z = x+iy let    U(x, y) = ½ [φ(x+iy) +...
Given a function φ(z) with z = x+iy let    U(x, y) = ½ [φ(x+iy) + φ(x-iy)] and V(x, y) = i/2 [φ(x+iy) –φ(x-iy)] A) For φ(z) = z2 find U and V and their induced vector fields E =▼U and F =▼V also show that ▼2U = ▼2V = 0 B) Repeat for f(z) = z3 C) For f(z) = ln z we get U(x, y) = ½ ln (x2+y2) and V(x, y) = arctan (y/x) Find ▼U (electrostatic...
Find the maximum and minimum values of f(x,y) = x^2 - y^3 on the disk x^2...
Find the maximum and minimum values of f(x,y) = x^2 - y^3 on the disk x^2 + y^2 ≤ 1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT