DEFINITIONS
Definition Math output errorMath output errorMath output errorMath output errorMath output error\textbf{binomial probability}binomial probability:
Math output errorMath output errorMath output errorMath output errorMath output errorP(X=k)=C_k^n \cdot p^k\cdot q^{n-k}=\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}P(X=k)=Ckn⋅pk⋅qn−k=k!(n−k)!n!pk(1−p)n−k
Math output errorMath output errorMath output errorMath output errorMath output error\textbf{Addition rule}Addition rule for disjoint or mutually exclusive events:
Math output errorMath output errorMath output errorMath output errorMath output errorP(A\cup B)=P(A\text{ or }B)=P(A)+P(B)P(A∪B)=P(A or B)=P(A)+P(B)
Math output errorMath output errorMath output errorMath output errorMath output error\textbf{Complement rule}Complement rule:
Math output errorMath output errorMath output errorMath output errorMath output errorP(A^c)=P(\text{ not }A)=1-P(A)P(Ac)=P( not A)=1−P(A)
SOLUTION
Math output errorMath output errorMath output errorMath output errorMath output error\begin{align*} n&=\text{Number of trials}=12 \\ p&=\text{Probability of success}=80\%=0.8 \end{align*}np=Number of trials=12=Probability of success=80%=0.8
(a) Evaluate the definition of binomial probability at Math output errorMath output errorMath output errorMath output errorMath output errork=0,1,2,3,4k=0,1,2,3,4:
Math output errorMath output errorMath output errorMath output errorMath output error\begin{align*} P(X=0)&=C_0^{12} \cdot 0.7^0\cdot (1-0.7)^{12-0}=\dfrac{12!}{0!(12-0)!}\cdot 0.7^0\cdot 0.7^{12}\approx 0.0000 \\ P(X=1)&=C_1^{12} \cdot 0.7^1\cdot (1-0.7)^{12-1}=\dfrac{12!}{1!(12-1)!}\cdot 0.7^1\cdot 0.7^{11}\approx 0.0000 \\ P(X=2)&=C_2^{12} \cdot 0.7^2\cdot (1-0.7)^{12-2}=\dfrac{12!}{2!(12-2)!}\cdot 0.7^2\cdot 0.7^{10}\approx 0.0000 \\ P(X=3)&=C_3^{12} \cdot 0.7^3\cdot (1-0.7)^{12-3}=\dfrac{12!}{3!(12-3)!}\cdot 0.7^3\cdot 0.7^9\approx 0.0001 \\ P(X=4)&=C_4^{12} \cdot 0.7^4\cdot (1-0.7)^{12-4}=\dfrac{12!}{4!(12-4)!}\cdot 0.7^4\cdot 0.7^8\approx 0.0005 \end{align*}P(X=0)P(X=1)P(X=2)P(X=3)P(X=4)=C012⋅0.70⋅(1−0.7)12−0=0!(12−0)!12!⋅0.70⋅0.712≈0.0000=C112⋅0.71⋅(1−0.7)12−1=1!(12−1)!12!⋅0.71⋅0.711≈0.0000=C212⋅0.72⋅(1−0.7)12−2=2!(12−2)!12!⋅0.72⋅0.710≈0.0000=C312⋅0.73⋅(1−0.7)12−3=3!(12−3)!12!⋅0.73⋅0.79≈0.0001=C412⋅0.74⋅(1−0.7)12−4=4!(12−4)!12!⋅0.74⋅0.78≈0.0005
Since it is not possible to obtain two different number of successes on the same simulation, we can use the addition rule for mutually exclusive events:
Math output errorMath output errorMath output errorMath output errorMath output error\begin{align*} P(X\leq 4)&=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4) \\ &=0.0000+0.0000+0.0000+0.0001+0.0005 \\ &=0.0006 \end{align*}P(X≤4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=0.0000+0.0000+0.0000+0.0001+0.0005=0.0006
Use the complement rule:
Math output errorMath output errorMath output errorMath output errorMath output errorP(X\geq 5)=1-P(X\leq 4)=1-0.0006=0.9994P(X≥5)=1−P(X≤4)=1−0.0006=0.9994
Command Ti83/84-calculator: Math output errorMath output errorMath output errorMath output errorMath output error1-1−binomcdf(12,0.8,4)
(b) Evaluate the definition of binomial probability at Math output errorMath output errorMath output errorMath output errork=7k=7:
P(X=7)=C712⋅0.77⋅(1−0.7)12−7=7!(12−7)!12!⋅0.77⋅0.75≈0.0532
(c) Evaluate the definition of binomial probability at Math output errorMath output errorMath output errork=0,1,2,3,4,5k=0,1,2,3,4,5:
P(X=0)P(X=1)P(X=2)P(X=3)P(X=4)P(X=5
=C012⋅0.70⋅(1−0.7)12−0=0!(12−0)!12!⋅0.70⋅0.712≈0.0000=C112⋅0.71⋅(1−0.7)12−1=1!(12−1)!12!⋅0.71⋅0.711≈0.0000=C212⋅0.72⋅(1−0.7)12−2=2!(12−2)!12!⋅0.72⋅0.710≈0.0000=C312⋅0.73⋅(1−0.7)12−3=3!(12−3)!12!⋅0.73⋅0.79≈0.0001=C412⋅0.74⋅(1−0.7)12−4=4!(12−4)!12!⋅0.74⋅0.78≈0.0005=C512⋅0.75⋅(1−0.7)12−5=5!(12−5)!12!⋅0.75⋅0.77≈0.0033
Since it is not possible to obtain two different number of successes on the same simulation, we can use the addition rule for mutually exclusive events:
P(X<6)=P(X≤5)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=0.0000+0.0000+0.0000+0.0001+0.0005+0.0033=0.0039
Math output errorMath output error\begin{align*} P(X<6)&=P(X\leq 5) \\ &=P(X=0)+P(X=1)+P(X=2)+P(X=3) \\ &+P(X=4)+P(X=5) \\ &=0.0000+0.0000+0.0000+0.0001+0.0005+0.0033 \\ &=0.0039 \end{align*}
Math output errorMath output errorMath output error\begin{align*} P(X=0)&=C_0^{12} \cdot 0.7^0\cdot (1-0.7)^{12-0}=\dfrac{12!}{0!(12-0)!}\cdot 0.7^0\cdot 0.7^{12}\approx 0.0000 \\ P(X=1)&=C_1^{12} \cdot 0.7^1\cdot (1-0.7)^{12-1}=\dfrac{12!}{1!(12-1)!}\cdot 0.7^1\cdot 0.7^{11}\approx 0.0000 \\ P(X=2)&=C_2^{12} \cdot 0.7^2\cdot (1-0.7)^{12-2}=\dfrac{12!}{2!(12-2)!}\cdot 0.7^2\cdot 0.7^{10}\approx 0.0000 \\ P(X=3)&=C_3^{12} \cdot 0.7^3\cdot (1-0.7)^{12-3}=\dfrac{12!}{3!(12-3)!}\cdot 0.7^3\cdot 0.7^9\approx 0.0001 \\ P(X=4)&=C_4^{12} \cdot 0.7^4\cdot (1-0.7)^{12-4}=\dfrac{12!}{4!(12-4)!}\cdot 0.7^4\cdot 0.7^8\approx 0.0005 \\ P(X=5)&=C_5^{12} \cdot 0.7^5\cdot (1-0.7)^{12-5}=\dfrac{12!}{5!(12-5)!}\cdot 0.7^5\cdot 0.7^7\approx 0.0033 \end{align*}