Question

In: Economics

In the consumption/leisure model, let the consumer’s utility function be U(C,l)=C.25+l.25. Suppose Pc=$1 and w1=$10 determine...

In the consumption/leisure model, let the consumer’s utility function be U(C,l)=C.25+l.25. Suppose Pc=$1 and w1=$10 determine the optimal amount of C and L and the equation for the labor supply.

Solutions

Expert Solution

Solution:

With the utility function of U(C, L) = C0.25 + L0.25 where C is consumption level in units and L is leisure hours.

Then marginal utility of consumption, MUc = d(U, C)/dC

MUc = 0.25*C0.25-1 + 0 = 0.25*C-0.75

And marginal utility of leisure, MUl = 0.25*L0.25-1 + 0 = 0.25*L-0.75

Assuming total number of available hours as the standard value of 24 hours and non labor income as 0, the required budget line becomes:

Pc*C + w*L = w*N ; where N is the number of labor hours. So, it must be L + N = 24, with total available hours of 24.

Then, budget line becomes: 1*C + 10*L =.10*(24 - L)

C + 10L = 240 - 10L

C + 20L = 240

Optimal level occurs where slope of indifference curve equals the ratio of prices. So, MUl/MUc = w/Pc

0.25*L-0.75/0.25*C-0.75 = 10/1

(C/L)0.75 = 10

Or C = 104/3*L

Substituting this in the budget line, we get:

104/3L + 20*L = 240

Solving this we get optimal value of L, and the corresponding optimal value of C.


Related Solutions

A. In the consumption/leisure model, let the consumer’s utility function be U(C,l)=C.25+l.25. Suppose Pc=$1 and w1=$10...
A. In the consumption/leisure model, let the consumer’s utility function be U(C,l)=C.25+l.25. Suppose Pc=$1 and w1=$10 determine the optimal amount of C and L and the equation for the labor supply. B. Suppose w2=$12 determine the new optimal C and L and determine the substitution and income effects of the price change of leisure.
2a) In the consumption/leisure model, let the consumer’s utility function be U(C,l)=C.25+l.25. Suppose Pc=$1 and w1=$10...
2a) In the consumption/leisure model, let the consumer’s utility function be U(C,l)=C.25+l.25. Suppose Pc=$1 and w1=$10 determine the optimal amount of C and L and the equation for the labor supply. b) Suppose w2=$12 determine the new optimal C and L and determine the substitution and income effects of the price change of leisure
25) Consider the following one-period, closed-economy model. Utility function over consumption (C) and leisure (L) U(C,L)...
25) Consider the following one-period, closed-economy model. Utility function over consumption (C) and leisure (L) U(C,L) = C 1/2 L 1/2 Total hours: H = 40 Labour hours: N S = H – L Government expenditure = 30 Lump-sum tax = T Production function: Y = zN D Total factor productivity: z = 2 The representative consumer maximizes utility, the representative firm maximizes profit, and the government balances budget. Suppose there is an increase in total factor productivity, z, to...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and production function: (Y=Output, N or Ns=Labour or Labour Supply) Y = 30N1/2 If h = 100 and G =10 (h=Hours of labour, G=Government spending). Find the equilibrium levels of the real wage (w), consumption (c), leisure (l), and output (Y). Question 2: (Continuting from question 1) a, Find the relationship between total tax revenue and the tax rate if G = tWN. (G=Government spending,...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and production function: (Y=Output, N or Ns=Labour or Labour Supply) Y = 30N1/2 If h = 100 and G =10 (h=Hours of labour, G=Government spending). Find the equilibrium levels of the real wage (w), consumption (c), leisure (l), and output (Y). Question 2: (Continuting from question 1) a, Find the relationship between total tax revenue and the tax rate if G = tWN. (G=Government spending,...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed with 16 hours of leisure. Let the price of consumption be p = 1. Robert can sell his time in the labor market at hourly wage, w. The equilibrium we will consider implies zero firm profits, so labor income is the only source of income for consumers. Thus, Robert’s budget line can be written by c + wl = 16w. Production of the consumption...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed with 16 hours of leisure. Let the price of consumption be p = 1. Robert can sell his time in the labor market at hourly wage, w. The equilibrium we will consider implies zero firm profits, so labor income is the only source of income for consumers. Thus, Robert’s budget line can be written by c + wl = 16w. Production of the consumption...
8、Assume that utility depends on consumption c and leisure l , U(c,l) . (a) Define reservation...
8、Assume that utility depends on consumption c and leisure l , U(c,l) . (a) Define reservation wage. (b) “The reservation wage increases with (i) non-labor income, (ii) fixed monetary costs of work, (iii) fixed time costs of work, and (iv) the price of consumption.” Prove or disprove each of these four claims.
Suppose that the utility function is U(c, l) = c^(a) l^(1−a) where < a < 1....
Suppose that the utility function is U(c, l) = c^(a) l^(1−a) where < a < 1. Calculate the slope of an indifference curve for this utility function. What happens to the slope of the indifference curve when c decreases and l increases? Explain.
Consider the consumer’s optimization problem in the one-period model. Utility is: u ( c , l...
Consider the consumer’s optimization problem in the one-period model. Utility is: u ( c , l ) = ln ⁡ ( c ) + γ ln ⁡ ( l ) where c is consumption of goods, l is leisure, and γ is a constant. The consumer’s nominal budget constraint is: P c = W ( h − l ) where P is the price of goods; W is the nominal wage; and h is the total hours in the period....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT