In: Finance
Pfd Company has debt with a yield to maturity of 5.7%, a cost of equity of 13.5%, and a cost of preferred stock of 8.7%. The market values of its debt, preferred stock, and equity are $10.2 million, $2.6 million, and $15.2 million, respectively, and its tax rate is 40%. What is this firm's after-tax WACC?
According to the given information,
Pre-tax Cost of debt = 5.7%
Cost of equity = 13.5%
Cost of preferred stock = 8.7%
Value of debt = $10.2 million
Value of preferred stock = $2.6 million
Value of equity = $15.2 million
Total value = Value of debt + Value of preferred stock + Value of
equity
= $10.2 + $2.6 + $15.2
= $28 million
Weight of debt = Value of debt / Total value
= $10.2 / $28
= 36.43%
Weight of preferred stock = Value of preferred stock / Total value
= $2.6 / $28
= 9.29%
Weight of equity = Value of equity / Total value
= $15.2 / $28
= 54.29%
First, we have to compute the after-tax cost of debt
After-tax cost of debt = pre-tax cost of debt (1-tax rate)
= 0.057 (1 - 0.40)
= 3.42%
Therefore, the value of after-tax cost of debt is 3.42%
The formula for calculating the WACC is
WACC = [Wd * Rd] + [Wp * Rp] + [We * Re]
where Wd is the weight of debt
Rd is the after-tax cost of debt
Wp is the weight of preferred stock
Rp is the cost of preferred stock
We is the weight of equity
Re is the cost of equity
Substituting the values in the above formula, we get
WACC = [0.364 * 0.0342] + [0.093 * 0.087] + [0.543 * 0.135]
= 0.0125 + 0.0081 + 0.0733
= 0.0938 or 9.38%
Therefore, the value of WACC is 9.38%