Question

In: Biology

A female fruit fly with the recessive mutant phenotype of white eyes and miniature wings is...

A female fruit fly with the recessive mutant phenotype of white eyes and miniature wings is mated with a male possessing the wild-type phenotype of red eyes and normal wings. Among the F1s, all the females are wild-type while all the males exhibit the mutant phenotype. The F2s resulting from a test cross exhibit predominantly (63%) parental phenotypes. How do you explain these results?

Solutions

Expert Solution

These results occur when the two alleles are linked to the X chromosome.

In fruit flies, males are hemizygous for the X chromosome(have only 1 copy of the X chromosome), and therefore male F1 flies express both mutant phenotypes, it inherited from the Parental female fly. However, since the F1 females have two X chromosomes, one carrying Wild-type alleles from the parental Male, they express wild-type phneotypes for both traits.

When the F1 is test-crossed to produce the F2 progeny if the two loci were assorting independently, the expectation is that each allele would assort independently of the other and would produce 1:1:1:1 :: White-eyes, Normal Wings: White-eyes, Miniature Wings: Red-eyes, Normal Wings: Red eyes, Miniature Wings F2 progeny.

However, if the two loci are 'linked' and the genes coding for these phenotypes are present on the same X chromosome, non-parental phenotypes would only occur when a crossing over or recombination event occurs that exchanges genetic material between non-sister chromatids.


Related Solutions

Long wings in fruit flies are dominant to vestigial wings. A long winged fruit fly is...
Long wings in fruit flies are dominant to vestigial wings. A long winged fruit fly is crossed with a vestigial winged fly. What are the genotypes of the parents and offspring if the cross results in 72 long winged and 68 vestigial winged offspring.
F1 Wild Type : Red Eyes and Long Wings & Mutants: White Eyes and Short Wings...
F1 Wild Type : Red Eyes and Long Wings & Mutants: White Eyes and Short Wings Mutant Female x Wild Type Male Wild Type Wing & Red Eyes Females 121 Mutant Wing & White Eyes Males 95 Wild Type Female x Mutate Male Wild Type Wing & Red Eyes Females 43 Wild Type Wing & Red Eyes Males 45 F2 Blue Label Red Label F1 Female x Mutant Male F1 Female x Mutant Male Wild Type Wing & Red Eyes...
P1: A female heterozygous for white (w), yellow (y) and miniature (m) – (all 3 recessive...
P1: A female heterozygous for white (w), yellow (y) and miniature (m) – (all 3 recessive mutations) is crossed to a male who is mutant for all three traits. The F1 male progeny phenotypes are: + + m 2278 w y + 2157 w y m 1203 + + + 1092 + y m 49 w + + 41 + y + 2 w + m 1 Total = 6823 What are the map distances between all three genes? Round...
Miniature wings in Drosophila are due to an X-linked allele (Xm) that is recessive to the...
Miniature wings in Drosophila are due to an X-linked allele (Xm) that is recessive to the wild-type allele for normal long wings (X+). Sepia eyes are produced by an autosomal allele (se), which is recessive to the wild-type allele for red eyes (se+). A female that is homozygous for normal wings and has sepia eyes is crossed with a male that has miniature wings and is homozygous for red eyes. The F1 offspring are intercrossed to produce the F2 generation....
4. In fruit flies, normal eyes (+) are dominant over small eyes (ey) and straight wings...
4. In fruit flies, normal eyes (+) are dominant over small eyes (ey) and straight wings (+) are dominant over curly wings (Cy). Work the following crosses through the F2 generation, and determine the genotypic and phenotypic ratios for each generation. Assume P1 individuals are homozygous: a. +, + x ey, Cy b. +, Cy x ey, + c. +, + x +, Cy
In fruit flies, curved wings (c) are recessive to straight wings (C), and ebony body (g)...
In fruit flies, curved wings (c) are recessive to straight wings (C), and ebony body (g) is recessive to gray body (G). A cross was made between true-breeding flies with straight wings and gray bodies and flies with curved wings and ebony bodies. The F1 offspring were then mated to flies with curved wings and ebony bodies to produce an F2 generation (test-cross). The following offspring was observed: 114 curved wings, ebony body 105 curved wings, gray body 111 straight...
In fruit flies, curved wings (c) are recessive to straight wings (C), and ebony body (g)...
In fruit flies, curved wings (c) are recessive to straight wings (C), and ebony body (g) is recessive to gray body (G). A cross was made between true-breeding flies with straight wings and gray bodies and flies with curved wings and ebony bodies. The F1offspring were then mated to flies with curved wings and ebony bodies to produce an F2 generation (test-cross). The following offspring was observed: 114 curved wings, ebony body 105 curved wings, gray body 111 straight wings,...
In fruit flies, curved wings (c) are recessive to straight wings (C), and ebony body (g)...
In fruit flies, curved wings (c) are recessive to straight wings (C), and ebony body (g) is recessive to gray body (G). A cross was made between true-breeding flies with straight wings and gray bodies and flies with curved wings and ebony bodies. The F1offspring were then mated to flies with curved wings and ebony bodies to produce an F2 generation (test-cross). The following offspring was observed: 114 curved wings, ebony body 105 curved wings, gray body 111 straight wings,...
In the fruit fly, Drosophila melanogaster, a wingless female fly is mated to a male that...
In the fruit fly, Drosophila melanogaster, a wingless female fly is mated to a male that is white-bodied and legless. Assume that all alleles causing these phenotypes are recessive. Phenotypically wild-type F1 female progeny were mated to fully homozygous (mutant) males, and the following progeny were observed: Phenotypes Number Observed wingless                           324 wild-type                             34 white, wingless                 135 white                                   8 white, legless                   319 hairless, white, legless     32 hairless                              140 hairless, legless               9 (a) With respect to the three genes mentioned in the problem, what are the genotypes...
In the fruit fly, Drosophila melanogaster, a spineless (sp, no wing bristles) female fly is mated...
In the fruit fly, Drosophila melanogaster, a spineless (sp, no wing bristles) female fly is mated to a male that is claret (cl, dark eyes) and hairless (h, no thoracic bristles). Phenotypically wild type F1 female progeny were mated to fully homozygous (mutant) males and the following progeny (1000 total) were observed.             PHENOTYPES                    NUMBER OBSERVED             spineless                                             316             wild                                                         8             claret, spineless                                  136             claret                                                     37             claret, hairless                                    304             hairless, claret, spineless                     12             hairless                                               144             hairless, spineless                                43 What is the correct gene map for these genes?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT