Question

In: Physics

A 100-W incandescent light bulb has a cylindrical tungsten filament 26.0 cm long, 0.35 mm in...

A 100-W incandescent light bulb has a cylindrical tungsten filament 26.0 cm long, 0.35 mm in diameter, and with an emissivity of 0.28.

(A) What is the temperature of the filament?

(B) For what wavelength does the spectral emittance of the bulb peak?

(C) Incandescent light bulbs are not very efficient sources of visible light. Explain why this is so.

Solutions

Expert Solution


Related Solutions

An incandescent light bulb uses a coiled filament of tungsten that is 580 mm long with...
An incandescent light bulb uses a coiled filament of tungsten that is 580 mm long with a diameter of 46.0 μm. At 20.0∘C tungsten has a resistivity of 5.25×10−8Ω⋅m. Its temperature coefficient of resistivity is 0.0045 (C∘)−1, and this remains accurate even at high temperatures. The temperature of the filament increases linearly with current, from 20∘C when no current flows to 2520∘C at 1.00 A of current. What is the resistance of the light bulb at 20∘C? What is the...
The length of a 60 W, 240 Ω light bulb filament is 60 cm.
The length of a 60 W, 240 Ω light bulb filament is 60 cm. 1.) Remembering that the current in the filament is proportional to the electric field, what is the current in the filament following the doubling of its length? Express your answer using two significant figures. 2.) What is the resistance of the filament following the doubling of its length? Express your answer using two significant figures.
A particular make of light bulb contains argon at 50 Torr and has a tungsten filament...
A particular make of light bulb contains argon at 50 Torr and has a tungsten filament of radius 0.10mm and length 5.0cm. When operating, the gas close to the filament has a temperature of about 1000°C. How many collisions are made with the filament in each second.
Calculate the rate of energy emitted from an incandescent tungsten halogen light bulb as a function...
Calculate the rate of energy emitted from an incandescent tungsten halogen light bulb as a function of wavelength (W/m2 per µm versus wavelength in µm). Assume the tungsten filament has a temperature of 3300 K. c. What fraction of the total energy emitted by the bulb produces light that we can see and what fraction is wasted as heat (λ > 800 nm)? d. Compare total area under your emissive power plot to theoretical area. Given the total power emitted...
Please include diagrams: a) A 100-W light bulb and a 40-W light bulb are both rated...
Please include diagrams: a) A 100-W light bulb and a 40-W light bulb are both rated at household voltage. i) Which light bulb will be brighter if the two bulbs are connected in parallel and this combination connected to a household voltage source? ii) Which light bulb will be brighter if they are connected in series and this combination connected to a household voltage? b) A battery charges a parallel plate capacitor. After it is fully charged, it is then...
compare the intensity of a 100 W light bulb while you are reading a book to...
compare the intensity of a 100 W light bulb while you are reading a book to the intensity of the sun. what assumptions were made ?
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5...
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5 W/m-K) generating 24 kW/m3 uniformly throughout its volume. The rod is enclosed within a tube having an outer radius of 200 mm and a thermal conductivity of 4 W/m-K. The outer surface is exposed to a convection environment at 100 C with a convective heat transfer coefficient of 20 W/m2-k. a) Calculate the heat rate per unit length being convected away from the rod....
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5...
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5 W/m-K) generating 24 kW/m3 uniformly throughout its volume. The rod is enclosed within a tube having an outer radius of 200 mm and a thermal conductivity of 4 W/m-K. The outer surface is exposed to a convection environment at 100 C with a convective heat transfer coefficient of 20 W/m2-k. a) Calculate the heat rate per unit length being convected away from the rod....
A cylindrical tube that is 2.20 m long and has a radius of 150 mm is...
A cylindrical tube that is 2.20 m long and has a radius of 150 mm is filled with water. It is oriented with its long central axis vertical, and it is open to the air at the upper end. A hole 80.0 mm in radius is drilled in the bottom, and the water is allowed to drain out. When the water level is half the height of the tube, (a) what is the speed of the water exiting through the...
A 400-W cylindrical resistance heater is 1 m long and 0.5-cm-diameter. The resistance wire is placed...
A 400-W cylindrical resistance heater is 1 m long and 0.5-cm-diameter. The resistance wire is placed horizontally in a fluid at 20◦C, flowing at a velocity of 20 m/s. Determine the outer surface temperature of the resistance wire in steady operation if the fluid is (a) air and (b) water. Ignore any heat transfer by radiation and evaluate properties of air at 800 K and properties of water at 315 K.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT