In: Statistics and Probability
| 
 Participant  | 
 Intelligence Score  | 
 Motivation Score  | 
| 
 1  | 
 61  | 
 100  | 
| 
 2  | 
 56  | 
 90  | 
| 
 3  | 
 56  | 
 117  | 
| 
 4  | 
 29  | 
 66  | 
| 
 5  | 
 43  | 
 100  | 
| 
 6  | 
 41  | 
 92  | 
| 
 7  | 
 45  | 
 86  | 
| 
 8  | 
 31  | 
 78  | 
| 
 Mean  | 
 45.25  | 
 91.13  | 
| 
 S.D.  | 
 11.77  | 
 15.39  | 
| X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 61 | 100 | 248.06 | 78.8 | 139.8 | 
| 56 | 90 | 115.56 | 1.3 | -12.1 | 
| 56 | 117 | 115.56 | 669.5 | 278.2 | 
| 29 | 66 | 264.06 | 631.3 | 408.3 | 
| 43 | 100 | 5.06 | 78.8 | -20.0 | 
| 41 | 92 | 18.06 | 0.8 | -3.7 | 
| 45 | 86 | 0.06 | 26.3 | 1.3 | 
| 31 | 78 | 203.06 | 172.3 | 187.0 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 362 | 729 | 969.5 | 1658.9 | 978.75 | 
| mean | 45.250 | 91.13 | SSxx | SSyy | SSxy | 
sample size ,   n =   8  
       
here, x̅ =   45.250   ,   ȳ
=   91.1250  
          
       
SSxx =    Σ(x-x̅)² =    969.50  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   978.8  
       
          
       
a)
slope , ß1 = SSxy/SSxx = 1.0095
b)   
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
45.4433     
c)
so, regression line is   Ŷ =  
45.4433   +   1.00954   *x
for every unit increase in intelligence score, motivation score get
increase by 1.00954
d)
SSE=   (Sx*Sy - S²xy)/Sx =    670.79
      
std error ,Se =    √(SSE/(n-2)) =   
10.5734
e)
X Value=   50
Confidence Level=   95%
  
  
Sample Size , n=   8
Degrees of Freedom,df=n-2 =   6
critical t Value=tα/2 =   2.447
margin of error,E=t*Std error=t* S(ŷ) =t*Se*√ (1/n+(X-X̅)²/Sxx) = 9.9624
Confidence Lower Limit=Ŷ -E =   85.958
Confidence Upper Limit=Ŷ +E =   105.883
f)
X Value=   65
Confidence Level=   95%
  
  
Sample Size , n=   8
Degrees of Freedom,df=n-2 =   6
critical t Value=tα/2 =   2.447
margin of error,E=t*Std error=t* S(ŷ) = t*Se*√ (1/n+(X-X̅)²/Sxx) = 18.7879
Confidence Lower Limit=Ŷ -E =   92.2756
Confidence Upper Limit=Ŷ +E =   129.8513
g)
slope hypothesis test      
Ho:   ß1=   0
H1:   ß1╪   0
n=   8      
       
alpha=   0.05      
       
estimated std error of slope =Se(ß1) =   
            s/√Sxx =
   0.3396
          
       
t stat =    ß1 /Se(ß1) =       
2.973
          
       
  
p-value =    0.0249      
       
decision :    p-value<α , reject Ho , so slope is
significant
-----------------------
second way is
| Anova table | |||||
| variation | SS | df | MS | F-stat | p-value | 
| regression | 988.088 | 1 | 988 | 8.838 | 0.0249 | 
| error, | 670.787 | 6 | 111.798 | ||
| total | 1658.875 | 7 | 
F-stat = 8.838
p-value = 0.0249
p-value<α , reject Ho , so model is significant at α=0.05