Question

In: Statistics and Probability

A coin is tossed twice. Let Z denote the number of heads on the first toss...

A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find the correlation between W and Z.

Solutions

Expert Solution


Related Solutions

A coin is tossed twice. Let Z denote the number of heads on the first toss...
A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find the correlation between W and Z
A fair coin is tossed four times. Let X denote the number of heads occurring and...
A fair coin is tossed four times. Let X denote the number of heads occurring and let Y denote the longest string of heads occurring. (i) determine the joint distribution of X and Y (ii) Find Cov(X,Y) and ρ(X,Y).
Q7 A fair coin is tossed three times independently: let X denote the number of heads...
Q7 A fair coin is tossed three times independently: let X denote the number of heads on the first toss (i.e., X = 1 if the first toss is a head; otherwise X = 0) and Y denote the total number of heads. Hint: first figure out the possible values of X and Y , then complete the table cell by cell. Marginalize the joint probability mass function of X and Y in the previous qusetion to get marginal PMF’s.
a) A coin is tossed 4 times. Let X be the number of Heads on the...
a) A coin is tossed 4 times. Let X be the number of Heads on the first 3 tosses and Y be the number of Heads on the last three tossed. Find the joint probabilities pij = P(X = i, Y = j) for all relevant i and j. Find the marginal probabilities pi+ and p+j for all relevant i and j. b) Find the value of A that would make the function Af(x, y) a PDF. Where f(x, y)...
A fair coin is tossed r times. Let Y be the number of heads in these...
A fair coin is tossed r times. Let Y be the number of heads in these r tosses. Assuming Y=y, we generate a Poisson random variable X with mean y. Find the variance of X. (Answer should be based on r).
A coin is tossed 6 times. Let X be the number of Heads in the resulting...
A coin is tossed 6 times. Let X be the number of Heads in the resulting combination. Calculate the second moment of X. (A).Calculate the second moment of X (B). Find Var(X)
Flip a fair coin 4 times. Let ? and ? denote the number of heads and...
Flip a fair coin 4 times. Let ? and ? denote the number of heads and tails correspondingly. (a) What is the distribution of ?? What is the distribution of ? ? (b) Find the joint PMF. Are ? and ? independent? (c) Calculate ?(? ?) and ?(X≠?)(d) Calculate C??(?, ? ) and C???(?, ? )
Toss a fair coin repeatedly. Let N1 be the number of tosses required to obtain heads...
Toss a fair coin repeatedly. Let N1 be the number of tosses required to obtain heads followed immediately by tails. Let N2 be the number of tosses required to obtain two heads in a row. (A) Should N1 and N2 have the same expected value? If not, which expected value should be larger? Explain your answers. (B) Find the probability mass function of N1. (C) Find the expected value of N1. (D) Find the probability mass function of N2. (E)...
Let X be the number of Heads when we toss a coin 3 times. Find the...
Let X be the number of Heads when we toss a coin 3 times. Find the probability distribution (that is, the probability function) for X
Toss a coin 5 times. Let X denote the number of tails appeared. a. Write down...
Toss a coin 5 times. Let X denote the number of tails appeared. a. Write down the probability mass function of X. b. Write down the cumulative distribution function of X. c. Graph the cumulative distribution function of X. d. Find the expectation of E[X] e. Find the variance Var[X]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT