Question

In: Statistics and Probability

Toss a coin 5 times. Let X denote the number of tails appeared. a. Write down...

Toss a coin 5 times. Let X denote the number of tails appeared. a. Write down the probability mass function of X. b. Write down the cumulative distribution function of X. c. Graph the cumulative distribution function of X. d. Find the expectation of E[X] e. Find the variance Var[X]

Solutions

Expert Solution


Related Solutions

Let X be the number of Heads when we toss a coin 3 times. Find the...
Let X be the number of Heads when we toss a coin 3 times. Find the probability distribution (that is, the probability function) for X
A coin is tossed twice. Let Z denote the number of heads on the first toss...
A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find the correlation between W and Z.
A coin is tossed twice. Let Z denote the number of heads on the first toss...
A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find the correlation between W and Z
A fair coin is tossed four times. Let X denote the number of heads occurring and...
A fair coin is tossed four times. Let X denote the number of heads occurring and let Y denote the longest string of heads occurring. (i) determine the joint distribution of X and Y (ii) Find Cov(X,Y) and ρ(X,Y).
An unbiased coin is tossed four times. Let the random variable X denote the greatest number...
An unbiased coin is tossed four times. Let the random variable X denote the greatest number of successive heads occurring in the four tosses (e.g. if HTHH occurs, then X = 2, but if TTHT occurs, then X = 1). Derive E(X) and Var(X). (ii) The random variable Y is the number of heads occurring in the four tosses. Find Cov(X,Y).
Q7 A fair coin is tossed three times independently: let X denote the number of heads...
Q7 A fair coin is tossed three times independently: let X denote the number of heads on the first toss (i.e., X = 1 if the first toss is a head; otherwise X = 0) and Y denote the total number of heads. Hint: first figure out the possible values of X and Y , then complete the table cell by cell. Marginalize the joint probability mass function of X and Y in the previous qusetion to get marginal PMF’s.
Flip a fair coin 4 times. Let ? and ? denote the number of heads and...
Flip a fair coin 4 times. Let ? and ? denote the number of heads and tails correspondingly. (a) What is the distribution of ?? What is the distribution of ? ? (b) Find the joint PMF. Are ? and ? independent? (c) Calculate ?(? ?) and ?(X≠?)(d) Calculate C??(?, ? ) and C???(?, ? )
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a...
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a coin for 1000 times. Use two different methods to find number of heads and tails Use for loops Use vectors in MATLAB. Repeat this experiment to find running average of flipping a coin for 200 and 2000 times. Plot the running average for two experiments using subplot functions
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a...
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a coin for 1000 times. Use two different methods to find number of heads and tails: Use for loops. Use vectors in MATLAB. Repeat this experiment to find running average of flipping a coin for 200 and 2000 times. Plot the running average for two experiments using subplot functions.
a) A coin is tossed 4 times. Let X be the number of Heads on the...
a) A coin is tossed 4 times. Let X be the number of Heads on the first 3 tosses and Y be the number of Heads on the last three tossed. Find the joint probabilities pij = P(X = i, Y = j) for all relevant i and j. Find the marginal probabilities pi+ and p+j for all relevant i and j. b) Find the value of A that would make the function Af(x, y) a PDF. Where f(x, y)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT