Question

In: Statistics and Probability

Construct two 95% confidence intervals for each sample. SD = $35,989.61 Apply the population standard deviation...

Construct two 95% confidence intervals for each sample.

SD = $35,989.61

Apply the population standard deviation (σ) in the formula to form z-distribution since the population standard deviation is known.

Loan Amount Type Sample 1
$    30,500.00 Commercial
$    78,500.00 Commercial
$    90,000.00 Commercial
$    19,000.00 Commercial
$    36,000.00 Commercial
$    89,500.00 Commercial
$    22,000.00 Commercial
$    65,000.00 Commercial
$ 109,000.00 Commercial
$     5,500.00 Commercial
$    93,500.00 Commercial
$     6,000.00 Commercial
$    85,500.00 Commercial
$    98,000.00 Commercial
$    57,000.00 Commercial
$    59,000.00 Commercial
$     8,500.00 Commercial
$     9,000.00 Commercial
$    16,000.00 Commercial
$    71,000.00 Commercial
$    79,000.00 Commercial
$    32,500.00 Commercial
$     3,500.00 Commercial
$    95,500.00 Commercial
$    75,500.00 Commercial
$    90,500.00 Commercial
$    25,500.00 Commercial
$ 122,000.00 Commercial
$    27,500.00 Commercial
$ 112,500.00 Commercial
$    91,000.00 Commercial
$ 107,500.00 Commercial
$    75,500.00 Commercial
$    73,000.00 Commercial
$    17,500.00 Commercial
$    91,000.00 Commercial
$    23,500.00 Commercial
$ 111,000.00 Commercial
$    66,500.00 Commercial
$    21,000.00 Commercial
$    21,500.00 Commercial
$    12,000.00 Commercial
$    45,000.00 Commercial
$ 123,000.00 Commercial
$    18,500.00 Commercial
$     6,500.00 Commercial
$ 118,500.00 Commercial
$    91,000.00 Commercial
$    23,000.00 Commercial
$    38,500.00 Commercial
$    96,000.00 Commercial
$    91,000.00 Commercial
$    16,500.00 Commercial
$    36,000.00 Commercial
$    96,000.00 Commercial
$    96,500.00 Commercial
$    86,500.00 Commercial
$    46,000.00 Commercial
$    19,000.00 Commercial
$    84,500.00 Commercial
$    57,000.00 Commercial
$    29,000.00 Commercial
$ 124,500.00 Commercial
$    12,000.00 Commercial
$    50,000.00 Commercial
$    66,000.00 Commercial
$    48,000.00 Commercial
$    44,000.00 Commercial
$    92,000.00 Commercial
$    16,000.00 Commercial
$    39,500.00 Commercial
$     9,000.00 Commercial
$    43,000.00 Commercial
$    91,000.00 Commercial
$    73,000.00 Commercial
$    90,500.00 Commercial
$    64,500.00 Commercial
$ 112,500.00 Commercial
$    82,500.00 Commercial
$    86,500.00 Commercial
$    10,000.00 Commercial
$    31,500.00 Commercial
$    41,500.00 Commercial
$    39,000.00 Commercial
$    40,500.00 Commercial
$    69,000.00 Commercial
$    66,500.00 Commercial
$    60,000.00 Commercial
$    54,000.00 Commercial
$ 122,000.00 Commercial
$    44,000.00 Commercial
$    33,000.00 Commercial
$    97,000.00 Commercial
$ 103,000.00 Commercial
$    97,500.00 Commercial
$ 110,500.00 Commercial
$    21,500.00 Commercial
$ 116,000.00 Commercial
$    72,000.00 Commercial
$    66,500.00 Commercial
$    79,000.00 Commercial
$    36,000.00 Commercial
$    84,000.00 Commercial
$    99,000.00 Commercial
$     4,000.00 Commercial
$ 115,000.00 Commercial
$    86,000.00 Commercial
$    42,000.00 Commercial
$ 117,000.00 Commercial
$    18,500.00 Commercial
$ 123,000.00 Commercial
$ 109,000.00 Commercial
$    37,500.00 Commercial
$    53,500.00 Commercial
$    36,000.00 Commercial
$    62,000.00 Commercial
$    44,500.00 Commercial
$     3,500.00 Commercial
$    56,500.00 Commercial
$    82,000.00 Commercial
$     7,500.00 Commercial
$    94,000.00 Commercial
$    89,000.00 Commercial
$     6,500.00 Commercial
$     9,500.00 Commercial
$    89,000.00 Commercial
$     6,500.00 Commercial
$    95,500.00 Commercial
$    23,500.00 Commercial
$    59,000.00 Commercial
$    31,000.00 Commercial
$    22,500.00 Commercial
$    35,000.00 Commercial
$    59,000.00 Commercial
$    31,500.00 Commercial
$    40,500.00 Commercial
$    73,500.00 Commercial
$    21,500.00 Commercial
$    45,000.00 Commercial
$    79,500.00 Commercial
$ 110,500.00 Commercial
$ 112,000.00 Commercial
$    12,500.00 Commercial
$ 105,000.00 Commercial
$    92,500.00 Commercial
$    65,000.00 Commercial
$     7,500.00 Commercial
$     6,000.00 Commercial
$    73,500.00 Commercial
$    98,500.00 Commercial
$    59,500.00 Commercial
$    31,000.00 Commercial
$    67,000.00 Commercial
$    28,500.00 Commercial
$    63,500.00 Commercial
$ 108,500.00 Commercial
$ 101,000.00 Commercial
$ 120,000.00 Commercial
$    63,500.00 Commercial
$    74,000.00 Commercial
$    40,000.00 Commercial
$ 109,500.00 Commercial
$ 114,500.00 Commercial
$    89,000.00 Commercial
$    86,000.00 Commercial
$    69,500.00 Commercial
$    85,000.00 Commercial
$     5,500.00 Commercial
$ 112,500.00 Commercial
$    95,000.00 Commercial
$    70,500.00 Commercial
$    33,000.00 Consumer
$    89,500.00 Consumer
$    40,000.00 Consumer
$    76,000.00 Consumer
$    72,500.00 Consumer
$ 123,500.00 Consumer
$     9,000.00 Consumer
$     6,500.00 Consumer
$ 113,500.00 Consumer
$    86,000.00 Consumer
$ 108,500.00 Consumer
$    24,500.00 Consumer
$    78,000.00 Consumer
$    70,000.00 Consumer
$ 125,000.00 Consumer
$    32,500.00 Consumer
$    15,000.00 Consumer
$    16,000.00 Consumer
$    40,500.00 Consumer
$ 101,000.00 Consumer
$    12,000.00 Consumer
$    33,000.00 Consumer
$    50,000.00 Consumer
$    81,500.00 Consumer
$    17,500.00 Consumer
$    45,000.00 Consumer
$    56,500.00 Consumer
$    39,000.00 Consumer
$ 123,500.00 Consumer
$ 118,000.00 Consumer
$    46,500.00 Consumer
$    49,000.00 Consumer
$ 105,500.00 Consumer
$    15,500.00 Consumer
$    94,500.00 Consumer
$    20,000.00 Consumer
$    83,500.00 Consumer
$    74,000.00 Consumer
$    33,000.00 Consumer
$ 122,500.00 Consumer
$    64,000.00 Consumer
$    11,500.00 Consumer
$ 124,000.00 Consumer
$    33,000.00 Consumer
$    14,500.00 Consumer
$    11,500.00 Consumer
$    83,500.00 Consumer
$ 101,000.00 Consumer
$    62,000.00 Consumer
$    75,500.00 Consumer
$    18,500.00 Consumer
$    56,000.00 Consumer
$    66,500.00 Consumer
$    42,500.00 Consumer
$    44,500.00 Consumer
$    72,500.00 Consumer
$    20,000.00 Consumer
$    37,500.00 Consumer
$     5,500.00 Consumer
$    94,000.00 Consumer
$    98,000.00 Consumer
$    94,000.00 Consumer
$    57,500.00 Consumer
$    30,000.00 Consumer
$ 120,500.00 Consumer
$     8,000.00 Consumer
$ 108,500.00 Consumer
$     6,000.00 Consumer
$ 106,500.00 Consumer
$    31,000.00 Consumer
$    52,500.00 Consumer
$    58,500.00 Consumer
$ 105,000.00 Consumer
$     4,500.00 Consumer
$    76,500.00 Consumer
$    72,500.00 Consumer
$ 107,000.00 Consumer
$    98,500.00 Consumer
$    87,000.00 Consumer
$ 118,500.00 Consumer
$ 105,000.00 Consumer
$    64,500.00 Consumer
$    16,500.00 Consumer
$    77,500.00 Consumer
$    40,000.00 Consumer
$    16,000.00 Consumer
$ 111,000.00 Consumer
$    41,000.00 Consumer
$     7,000.00 Consumer
$    35,000.00 Consumer
$    90,000.00 Consumer
$    21,500.00 Consumer
$    71,500.00 Consumer
$ 115,500.00 Consumer
$    17,500.00 Consumer
$     8,500.00 Consumer
$    72,000.00 Consumer
$    56,500.00 Consumer
$    45,500.00 Consumer
$    49,000.00 Consumer
$    43,500.00 Consumer
$ 124,000.00 Consumer
$    41,000.00 Consumer
$    10,500.00 Consumer
$ 102,000.00 Consumer
$ 113,500.00 Consumer
$    36,500.00 Consumer
$    15,000.00 Consumer
$ 114,500.00 Consumer
$ 121,500.00 Consumer
$    76,000.00 Consumer
$    64,500.00 Consumer
$    27,000.00 Consumer
$    77,500.00 Consumer
$    63,500.00 Consumer
$    76,500.00 Consumer
$    48,500.00 Real Estate
$ 117,500.00 Real Estate
$    57,000.00 Real Estate
$    82,000.00 Real Estate
$ 118,000.00 Real Estate
$    70,000.00 Real Estate
$ 106,000.00 Real Estate
$    56,500.00 Real Estate
$    39,000.00 Real Estate
$ 119,000.00 Real Estate
$    93,000.00 Real Estate
$    11,000.00 Real Estate
$    66,000.00 Real Estate
$    19,500.00 Real Estate
$ 106,500.00 Real Estate
$    23,000.00 Real Estate
$    98,500.00 Real Estate
$    30,500.00 Real Estate
$ 120,500.00 Real Estate
$    82,500.00 Real Estate
$ 102,500.00 Real Estate
$    22,000.00 Real Estate
$ 112,500.00 Real Estate
$ 112,000.00 Real Estate
$    24,500.00 Real Estate
$    57,000.00 Real Estate
$    74,000.00 Real Estate
$ 102,500.00 Real Estate
$    29,000.00 Real Estate
$    81,500.00 Real Estate
$    34,000.00 Real Estate
$ 112,000.00 Real Estate
$    68,000.00 Real Estate
$ 109,500.00 Real Estate
$    32,000.00 Real Estate
$    32,000.00 Real Estate
$    99,000.00 Real Estate
$    93,500.00 Real Estate
$    95,000.00 Real Estate
$    89,000.00 Real Estate
$    83,000.00 Real Estate
$ 117,000.00 Real Estate
$    58,000.00 Real Estate
$    12,500.00 Real Estate
$ 102,500.00 Real Estate
$    81,000.00 Real Estate
$ 125,000.00 Real Estate
$    63,500.00 Real Estate
$ 107,500.00 Real Estate
$     9,000.00 Real Estate
$ 110,500.00 Real Estate
$    64,500.00 Real Estate
$    69,500.00 Real Estate
$    71,000.00 Real Estate
$    81,500.00 Real Estate
$    89,000.00 Real Estate
$    61,500.00 Real Estate
$    65,000.00 Real Estate
$ 123,000.00 Real Estate
$    65,000.00 Real Estate
$    45,000.00 Real Estate
$    25,000.00 Real Estate
$    17,000.00

Real Estate

Solutions

Expert Solution

GIVEN:

Population standard deviation

When the population standard deviation is known, the formula for a confidence interval (CI) for a population mean is given by,

  

where is the sample mean.

​ is the population standard deviation.

n is the sample size, and

z* represents the appropriate z*-value from the standard normal distribution for desired confidence level.

For the given problem the z*-value from the standard normal distribution for 95% confidence level is 1.96.

SAMPLE 1 (COMMERCIAL TYPE):

Let us consider sample 1 (commercial type)

Total number of observations from sample 1 (n) = 171

The sample mean is defined as the average of n observations from the sample and it is considered to be the estimate of pupulation mean.

I have used excel function to find the sample mean given by,

   "=AVERAGE(select array of values from sample 1)"

Thus the mean of sample 1

Population standard deviation

The z*-value from the standard normal distribution for 95% confidence level is 1.96.

The 95% confidence interval (CI) for a population mean is given by,

Thus 95% confidence interval for mean loan amount in the sample 1 (Commercial Type) is .

SAMPLE 2 (CONSUMER TYPE):

Let us consider sample 2 (consumer type)

Total number of observations from sample 2 (n) = 116

The sample mean is defined as the average of n observations from the sample and it is considered to be the estimate of pupulation mean.

I have used excel function to find the sample mean given by,

   "=AVERAGE(select array of values from sample 2)"

Thus the mean of sample 2 ​

Population standard deviation

The z*-value from the standard normal distribution for 95% confidence level is 1.96.

The 95% confidence interval (CI) for a population mean is given by,

Thus 95% confidence interval for mean loan amount in the sample 2 (Consumer Type) is   

SAMPLE 3 (REAL ESTATE TYPE):

Let us consider sample 3 (Real estate type)

Total number of observations from sample 3 (n) = 63

The sample mean is defined as the average of n observations from the sample and it is considered to be the estimate of pupulation mean.

I have used excel function to find the sample mean given by,

   "=AVERAGE(select array of values from sample 2)"

Thus the mean of sample 3 ​

Population standard deviation

The z*-value from the standard normal distribution for 95% confidence level is 1.96.

The 95% confidence interval (CI) for a population mean is given by,

Thus 95% confidence interval for mean loan amount in the sample 3 (Real Estate Type) is ​   


Related Solutions

Construct 95% confidence intervals for the population variance and population standard deviation of the given values...
Construct 95% confidence intervals for the population variance and population standard deviation of the given values below Sketch the results and interpret your findings (15 points). 1.286   1.138   1.240   1.132   1.381   1.137 1.300   1.167   1.240   1.401   1.241   1.171 1.217   1.360   1.302   1.331   1.383
Construct a 95% confidence interval for the population standard deviation of a random sample of 15...
Construct a 95% confidence interval for the population standard deviation of a random sample of 15 crates which have a mean weight of 165.2 points and a standard deviation of 12.9 pounds. Assume the population is normallyn distributed. A. 9.9, 18.8 B. 9.4, 20.3 Please show work.
construct the indicated confidence intervals for the population variance and the poplulation standard deviation. assume the...
construct the indicated confidence intervals for the population variance and the poplulation standard deviation. assume the sample is from a normally distributed population. c=0.95, s2=15.40, n=25
Calculate the Mean, Median, Standard Deviation, Coefficient of Variation and 95% population mean confidence intervals for...
Calculate the Mean, Median, Standard Deviation, Coefficient of Variation and 95% population mean confidence intervals for property prices of Houses based on the following grouping:  Proximity of the property to CBD Note: Calculate above statistics for both “Up to 5KM” and “Between 5KM and 10KM”  Number of bedrooms Note: Calculate above statistics for “One bedroom”, “Two bedrooms” and “Three bedrooms or more”  Number of bathrooms Note: Calculate above statistics for “One bathroom”, “Two bathrooms”, “Three bathrooms or...
Calculate the two-sided 95% confidence interval for the population standard deviation (sigma) given that a sample...
Calculate the two-sided 95% confidence interval for the population standard deviation (sigma) given that a sample of size n=8 yields a sample standard deviation of 7.96.
. It is desired to design 95 confidence intervals for the ratio between standard deviation of...
. It is desired to design 95 confidence intervals for the ratio between standard deviation of two electroplating lines in a micro-electro-mechanical system (MEMS) company. If independent samples of size n1=10 from line-1 has a standard deviation of S1=0.035 mil and sample size of n2=12 from line-2 has a standard deviation of s2=0.062 mil, estimate the confidence intervals for the ratio of standard deviation of line-1 to line-2 (s12/s22)
Use technology to construct the confidence intervals for the population variance sigmasquared and the population standard...
Use technology to construct the confidence intervals for the population variance sigmasquared and the population standard deviation sigma. Assume the sample is taken from a normally distributed population. cequals0.95​, sequals34​, nequals15
Use technology to construct the confidence intervals for the population variance sigmasquared and the population standard...
Use technology to construct the confidence intervals for the population variance sigmasquared and the population standard deviation sigma. Assume the sample is taken from a normally distributed population. c=0.95​, s=39​, n=16
Use technology to construct the confidence intervals for the population variance σ2 and the population standard...
Use technology to construct the confidence intervals for the population variance σ2 and the population standard deviation σ. Assume the sample is taken from a normally distributed population. c=0.90​ s=33​ n=20 The confidence interval for the population variance is (_, _ ) ​(Round to two decimal places as​ needed.) The confidence interval for the population standard deviation is (_, _ ) ​(Round to two decimal places as​ needed.)
Use technology to construct the confidence intervals for the population variance sigmaσsquared2 and the population standard...
Use technology to construct the confidence intervals for the population variance sigmaσsquared2 and the population standard deviation sigmaσ. Assume the sample is taken from a normally distributed population. cequals=0.95 ssquared2equals=12.96 nequals=25
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT