In: Chemistry
The vibrational peak and the first overtone of CO appear at 2143.31 and 4260.04 cm−1. Assuming a Morse potential, calculate the dissociation energy of the molecule in kJ/mol. Please show all work.
For Morse potential,the energy eigen values are given by:
Gv=(v+1/2)e-(v+1/2)^2 e*Xe
v=vibrational quantum numbers=0,1,2..........Vmax
Xe=anharmonicity constant (dimensionless)=e/4De
De=Dissociation energy from the bottom of the potential well
True Dissociation energy=Do=De-G(0) as the minimum energy is G(0) for a molecule called the zero point energy
Specific selection rule for tranition :v=1,2............
So,for fundamental peak ,v=01 ,v(cm-1)=e-2eXe
first overtone,v=02,v(cm-1)=2e-6eXe
given,The vibrational peak and the first overtone of CO appear at 2143.31 and 4260.04 cm−1.
So,v(cm-1)=e-2eXe=2143.31 cm−1.
first overtone,v=02,v(cm-1)=2e-6eXe=4260.04 cm−1.
or,e-2eXe=2143.31 cm−1..................(1)
2e-6eXe=4260.04 cm−1.....................(2)
eqn (2)-eqn(1),
2116.73 cm-1=-4eXe
So,eXe=2116.73 cm-1/-4=(-529.182 cm-1)
eXe=529.182 cm-1
putting this value in eqn (1),
,e-2(-529.182 cm-1)=2143.31 cm−1.
or,e=1084.946 cm-1
De=e/4Xe=we^2/4eXe=(1084.946 cm-1)^2/4*(-529.182 cm-1)=-556.098 cm-1
Do=De-G(o)=(-556.098 cm-1)-(2143.31cm-1)=-2699.408 cm-1
Do or dissociation energy=2699.408 cm-1