In: Math
The accompanying table lists the ages of acting award winners matched by the years in which the awards were won. Construct a scatterplot, find the value of the linear correlation coefficient r, and find the P-value of r. Determine whether there is sufficient evidence to support a claim of linear correlation between the two variables. Should we expect that there would be a correlation? Use a significance level of
alphaαequals=0.05.the award winners.
Construct a scatterplot. A scatterplot has a horizontal axis labeled Best Actress in years from 20 to 70 in increments of 5 and a vertical axis labeled Best Actor in years from 20 to 70 in increments of 5. Twelve points are plotted with approximate coordinates as follows: (27, 44); (30, 39); (28, 40); (58, 47); (31, 50); (34, 49); (46, 56); (30, 47); (61, 39); (22, 55); (43, 44); (54, 34).
Scatter plot:
X | Y | XY | X² | Y² |
27 | 44 | 1188 | 729 | 1936 |
30 | 39 | 1170 | 900 | 1521 |
28 | 40 | 1120 | 784 | 1600 |
58 | 47 | 2726 | 3364 | 2209 |
31 | 50 | 1550 | 961 | 2500 |
34 | 49 | 1666 | 1156 | 2401 |
46 | 56 | 2576 | 2116 | 3136 |
30 | 47 | 1410 | 900 | 2209 |
61 | 39 | 2379 | 3721 | 1521 |
22 | 55 | 1210 | 484 | 3025 |
43 | 44 | 1892 | 1849 | 1936 |
54 | 34 | 1836 | 2916 | 1156 |
Ʃx = | 464 |
Ʃy = | 544 |
Ʃxy = | 20723 |
Ʃx² = | 19880 |
Ʃy² = | 25150 |
Sample size, n = | 12 |
x̅ = Ʃx/n = 464/12 = | 38.6666667 |
y̅ = Ʃy/n = 544/12 = | 45.3333333 |
SSxx = Ʃx² - (Ʃx)²/n = 19880 - (464)²/12 = | 1938.66667 |
SSyy = Ʃy² - (Ʃy)²/n = 25150 - (544)²/12 = | 488.666667 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 20723 - (464)(544)/12 = | -311.666667 |
Correlation coefficient, r = SSxy/√(SSxx*SSyy)
= -311.66667/√(1938.66667*488.66667) = -0.3202
Null and alternative hypothesis:
Ho: ρ = 0
Ha: ρ ≠ 0
α = 0.05
Test statistic :
t = r*√(n-2)/√(1-r²) = -0.3202 *√(12 - 2)/√(1 - (-0.3202)²) = -1.0689
df = n-2 = 10
p-value = T.DIST.2T(ABS(-1.0689), 10) = 0.3103
Conclusion:
p-value > α , Fail to reject the null hypothesis.
There is not sufficient evidence to conclude that there is a linear correlation between the two variables y.