In: Finance
An investor buys a bond with the following characteristics:
The yield to maturity at the time of purchase is 8.50%. The investor sells the bond immediately after the sixth coupon payment, when the yield to maturity rises to 9.50%.
N | A | B=A/(1.085^N) | C | D=C/(1.085^N) | ||||||
Period | Cash flow | PV of Cash Flow | Period*Cash flow | PV of (Period* Cash flow) | ||||||
1 | $4.50 | 4.147465438 | $4.50 | 4.147465438 | ||||||
2 | $4.50 | 3.822548791 | $9.00 | 7.645097581 | ||||||
3 | $4.50 | 3.523086443 | $13.50 | 10.56925933 | ||||||
4 | $4.50 | 3.247084279 | $18.00 | 12.98833712 | ||||||
5 | $4.50 | 2.992704405 | $22.50 | 14.96352202 | ||||||
6 | $4.50 | 2.758252908 | $27.00 | 16.54951745 | ||||||
7 | $4.50 | 2.542168578 | $31.50 | 17.79518005 | ||||||
8 | $4.50 | 2.343012515 | $36.00 | 18.74410012 | ||||||
9 | $4.50 | 2.159458539 | $40.50 | 19.43512685 | ||||||
10 | $104.50 | 46.21882587 | $1,045.00 | 462.1882587 | ||||||
TOTAL | 73.75460777 | 585.0258647 | ||||||||
Maculay Duration | 7.93205852 | (585.0258647/73.75460777) | ||||||||
Modified Duration | (Maculay Duration)/(1+(YTM/2)) | |||||||||
Modified Duration | 7.60868922 | (7.93/(1+(0.085/2)) | ||||||||
Price at the time of Issue | $73.75 | |||||||||
If the YTM drops to 6.5% | ||||||||||
Decrease in YTM =1.5% | ||||||||||
Expected increase in price=1.5*Modified Duration | ||||||||||
Expected increase in price= | $11.90 | (1.5*7.93) | ||||||||
The price would have been | $85.65 | ($73.75+$11.90) | ||||||||
The difference is due to effect of Bond convexity | ||||||||||