Question

In: Physics

A large fish hangs from a spring balance supported from the roof of an elevator. Part...

A large fish hangs from a spring balance supported from the roof of an elevator.

Part A

If the elevator has an upward acceleration of 2.90m/s2 and the balance reads 50.0N , what is the true weight of the fish?

Part B

Under what circumstances will the balance read 32.0N ?

Part C

What will the balance read if the elevator cable breaks?

Solutions

Expert Solution

Force = weight + mass x acceleration
Force = mass x g + mass x acceleration
F = m(g + a)
50.0 = m(9.81 + 2.90)
m = 50.0/(12.71) = 3.93... kg
weight = mass x g = 3.93... x 9.81 = 38.6 N

(b)
34.0 = 3.93...(9.81 + a)
a = 34.0/3.93... - 9.81 = -1.1672 m/s^2

The elevator would be accelerating downwards at 1.1672 m/s^2.

There are two ways in which a NORMAL elevator could accelerate downward. (Of course an elevator with a large fish hanging from the ceiling is not normal.)

1) The elevator could go from being stopped to starting to go down. This is an acceleration downwards.

2) The elevator could be going up and come to a stop. This is also negative acceleration. Its speed up is decreasing.
4 years ago "

For the third part of your question, if the elevator cable breaks, the emergency brakes will operate and the elevator will stop. The balance will then read the stationary weight of the fish. The elevator will NOT go into free fall.


Related Solutions

A spring with spring constant 14 N/m hangs from the ceiling. A ball is attached to...
A spring with spring constant 14 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 7.0 cm and released. The ball makes 29 oscillations in 25 s seconds. a) What is its the mass of the ball? b) What is its maximum speed?
A spring with spring constant 20 N/m hangs from the ceiling. A ball is attached to...
A spring with spring constant 20 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 8.5 cm and released. The ball makes 28 oscillations in 18 s seconds. A) What is its the mass of the ball?​ B) What is its maximum speed?​
A 82-kg man stands on a spring scale in an elevator. Starting from rest, the elevator...
A 82-kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.2 m/s in 0.74 s. The elevator travels with this constant speed for 5.0 s, undergoes a uniform negative acceleration for 1.4 s, and then comes to rest. (a) What does the spring scale register before the elevator starts to move?   N (b) What does the spring scale register during the first 0.74 s of the elevator's ascent?...
A spring hangs from the ceiling. A block of 0.450 kg is tied to the other...
A spring hangs from the ceiling. A block of 0.450 kg is tied to the other end of the spring. When released from rest, the block lowers 0.150 m before momentarily reaching rest, after which it moves upwards. (1) What is the spring constant, K? (2) Calculate the angular frequency of the vibrations of the block.
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to...
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to fall from its maximum height of 2.3m to its minimum height of 1.6m above the floor. (a) At what height above the floor does the mass have zero acceleration? (b) What is the maximum speed of this mass? (c) If you start a timer ( t = 0) at the moment when the mass is falling below a height of 1.9m, then at what...
1) Sinusoidal Motion Properties in Spring Mass System- A 200g mass hangs from vibrating spring at...
1) Sinusoidal Motion Properties in Spring Mass System- A 200g mass hangs from vibrating spring at lowest point of 3cm above table and at it's highest point at 12cm above table. It's oscillation period is 4seconds. Determine the following: a. The spring constant in terms of T (period) b. The maximum velocity magnitude and maximum acceleration magnitude c. The velocity magnitude at 10cm above table d. The vertical position, velocity magnitude and acceleration magnitude at 5 seconds
(1 point) A brick of mass 8 kg hangs from the end of a spring. When...
(1 point) A brick of mass 8 kg hangs from the end of a spring. When the brick is at rest, the spring is stretched by 3920 cm. The spring is then stretched an additional 2 cm and released with a downward force of F(t)=143cos(6t) NF(t)=143cos⁡(6t) N acts on it. Assume there is no air resistance. Note that the acceleration due to gravity, gg, is g=980g=980 cm/s22. Find the spring constant  N/cm Set up a differential equation that describes this system....
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 10 cm below yi. (a) What is the frequency of the oscillation? (b) What is the speed of the object when it is 8.1 cm below the...
DIFFERENTIAL EQUATIONS: 1. A body with a weight of 3.5 grams force hangs from a spring...
DIFFERENTIAL EQUATIONS: 1. A body with a weight of 3.5 grams force hangs from a spring stretching it 3.21 centimeters. Initially the body starts from rest 3.4 centimeters below its equilibrium position. The medium in which the body moves offers a resistance force to movement that is numerically equal to 1/8 of its instantaneous speed. Knowing that there is an external force, changing in time, which is defined by the formula: f (t) = 7cos (t) grams force. Find the...
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 14 cm below yi. (a) What is the frequency of the oscillation? Hz (b) What is the speed of the object when it is 12.0 cm below...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT