Question

In: Civil Engineering

Magnitude of the resultant force

Determine the magnitude of the resultant force acting on the gusset plate and its direction.

Solutions

Expert Solution

In determining the magnitude of the resultant force using graphical method"

(1) In getting the forces acting on the x and y axis have in mind the trigonometry function.

(2) Signs vary in direction  ; in y axis, upward(+) and downward(-) while in x axis, right(+) and left(-).

(3) After getting the forces, have in mind the formula for resultant and angle.


Graphical method only needs a graph to plot your answer but solution for checking is alaso provided.

Related Solutions

Determine the magnitude of the resultant force. Determine the coordinate direction angle α of the resultant force.
Determine the magnitude of the resultant force. Determine the coordinate direction angle α of the resultant force. Determine the coordinate direction angle β of the resultant force.Determine the coordinate direction angle γ of the resultant force.   
Find the magnitude and the direction of the resultant force that acts upon the elbow which...
Find the magnitude and the direction of the resultant force that acts upon the elbow which is located on the horizontal plane. Diameter of pipe at section (1) is D1=10 cm, pressure is P1=150000 Pa , the diameter at section (2) is D2= 5 cm and the discharge is Q=0.025 m3/s.(pwater= 1000 kg/m3) Use Formula: ∑f equal to pQv2-pQv1
if f1=600N and theta=30°, determine the magnitude of the resultant force acting on the eyebolt and...
if f1=600N and theta=30°, determine the magnitude of the resultant force acting on the eyebolt and its direction measured clockwise from positive x axis
Determine the magnitude and direction of the resultant force. Show your work. A. R = 80.3...
Determine the magnitude and direction of the resultant force. Show your work. A. R = 80.3 lb, = 106.2° B. R = 80.3 lb, = 73.8° C. R = 72.1 lb, = 63.6° D. R = 72.1 lb, = 116.4°
2-4. Determine the magnitude of the resultant force acting on the bracket and its direction measured counterclockwise from the positive u axis.
2-4. Determine the magnitude of the resultant force acting on the bracket and its direction measured counterclockwise from the positive u axis.
Calculate the magnitude and direction of both the equilibrant and the resultant of the following three...
Calculate the magnitude and direction of both the equilibrant and the resultant of the following three vectors: 0.4N at 60°, 0.5N at 30°, and 0.2N at 330° .The object of this experiment is to demonstrate the vector property of forces and to gain experience in the addition of vector quantities.
Find the magnitude and direction of the resultant of two concurrent forces of 50 and 75...
Find the magnitude and direction of the resultant of two concurrent forces of 50 and 75 N acting on a body at angle of 50 degrees with each other Use the graphical method and the algerbraic method
Find the resultant (magnitude and direction) of these forces: 300 N at 00 and 400 N...
Find the resultant (magnitude and direction) of these forces: 300 N at 00 and 400 N at 1500. After falling from a cliff that is 100 m high, a 30 kg rock hits the ground below. Neglecting air resistance, how fast was it moving just as it hit? How much heat will it take to completely melt 2 kg of lead that is at 2270 C? What is the mutual attractive gravitational force between two people, each with a mass...
What is the magnitude of the electric force on charge A in the figure?
Part A What is the magnitude of the electric force on charge A in the figure?F=______N Part BWhat is the direction of the electric force on charge A in the figure? Choose best answer. (a)to the left (b)to the right (c)the force is zero
What is the magnitude F_ad of the downward force on section a?
To understand the concept of tension and the relationship between tension and force.This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. (Figure 1) LetFu and Fd (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT